
Generalised Variational Inference

for Gaussian Processes

James Wu
supervised by

Veit D. Wild & Jeremias Knoblauch

September 2023

MSc Computational Statistics and Machine Learning

This report is submitted as part requirement for the MSc Computational Statistics and Machine Learning at University
College London. It is substantially the result of my own work except where explicitly indicated in the text.

The report may be freely copied and distributed provided the source is explicitly acknowledged.

Abstract

Proposed by Knoblauch et al. (2022), generalised variational inference (GVI) is a learning

framework motivated by an optimisation-centric interpretation of Bayesian inference. Extend-

ing GVI to infinite dimensions, Wild et al. (2022) introduces Gaussian Wasserstein inference

(GWI) in function spaces. GWI demonstrates a new inference approach for variational Gaus-

sian processes (GPs), circumventing many limitations of previous approaches. Our work intro-

duces various improvements to GWI for GPs, including new kernel parameterisations such as

the neural network GP (NNGP) kernels from Novak et al. (2019). We also introduce a new

learning framework that we call projected GVI (pGVI) for GPs. pGVI weakens the GVI as-

sumption of a definite regulariser. Instead, we propose regularising between scalar projections

of the stochastic processes, an approach we call projected regularisation. We demonstrate that

pGVI is a highly flexible and well-performing variational inference framework with significantly

cheaper linearly time computational costs compared to the cubic costs of existing approaches.

We also present our learning frameworks through a comprehensive software implementation

available on GitHub1.

1For the most up-to-date version, see: https://github.com/jswu18/gvi-gaussian-process

i

https://github.com/jswu18/gvi-gaussian-process
https://github.com/jswu18/gvi-gaussian-process

Acknowledgements

This work would not have been possible without Jeremias Knoblauch and Veit D. Wild. Thank you

for your guidance and endless patience as I navigated this world of theory while wearing the hardhat

of an engineer. I look forward to continuing our collaboration into the future. I’d also like to thank

my friends and family who have supported me throughout my life and in particular, this past year.

- James

ii

Contents

0 Notation 1

1 Introduction 3

2 Gaussian Processes 4
2.1 The Gaussian Process . 4
2.2 Gaussian Process Regression . 5
2.3 Gaussian Process Classification . 5

3 Standard Variational Inference for Gaussian Processes 7
3.1 Standard Variational Inference in Finite Dimensions 7
3.2 Sparse Variational Gaussian Processes . 8
3.3 Inducing Point Selection . 10

4 Generalising Variational Inference for Gaussian Processes 13
4.1 Generalised Variational Inference in Finite Dimensions 13
4.2 Generalised Variational Inference on Function Spaces 14

5 Improving Gaussian Wasserstein Inference 16
5.1 Improved Kernel Selection . 16

5.1.1 Prior Kernels . 16
5.1.2 Variational Kernels . 18

5.2 An Improved Learning Procedure . 19
5.3 Wasserstein Distance Approximations . 20

6 Projected Generalised Variational Inference for Gaussian Processes 22
6.1 Projected Regularisation . 22
6.2 Base Regularisers . 23

7 Experimentation Framework 24
7.1 Implementation Architecture . 24
7.2 Experiment Scaling . 26
7.3 Regression Curve Experiments . 26

8 Future Work 29

9 Conclusions 30

Bibliography 31

A Appendix 33
A.1 Positive Semi-Definite Kernels . 33
A.2 Symmetric Matrix Eigenvalues . 34
A.3 Example Experiment Configurations . 35
A.4 Regression Curve Experiment Settings . 37

iii

0 Notation

We will first make some general remarks regarding the notation used throughout this report. We
will denote X as any input space, where X := {xn}N

n=1 is a set of N elements from the input space
such that X ∈ XN . We also indicate N input and response pairs as (X, Y) := {xn, yn}N

n=1, where
each input xn has a corresponding yn in a response space such as R. F , Q, and Γ will also denote
spaces, but will be defined throughout the text as needed.

We will frequently use mappings of the form m : X → R. Given X and m, we will construct
vectors of the form m ∈ RN such that each element is

[m]n := m(xn), (0.1)

for n = 1, . . . , N . Whenever we need additional clarity, we will denote m as mX or m (X) to
indicate its dependence on X and/or m.

We will also use mappings following k : X ×X → R. With X and k, we can construct matrices
of the form K ∈ RN×N where

[K]n,n′ := k(xn, xn′) (0.2)

for n, n′ = 1, . . . , N . We denote K as KX,X or k (X, X) whenever necessary.
A Gaussian distribution will be denoted N (·, ·), where

Y ∼ N (m, K) (0.3)

with Y ∈ RN , indicating that Y is a random vector following a Gaussian distribution having
m ∈ RN as the mean and K ∈ RN×N

≽0 as the covariance. The subscript ≽ 0 denotes that K is
positive semi-definite.

For any random element F , we review the following notation conventions:

• sample notation:

F ∼ N (·, ·) (0.4)

as seen previously, which becomes F |Y when F is conditioned on the known element Y,
• measure notation:

PF = N (·, ·), (0.5)

where PF is the probability measure of F or P(F) = N (·, ·), becoming P(F |Y) when condi-
tioned, and

• probability density notation:

p(f) = N (·, ·), (0.6)

when there exists a density p with respect to some other measure, most commonly the
Lebesgue measure. When conditioned, we denote p(f |Y).

1

Sample, measure, and probability density notation will be used interchangeably, whenever appro-
priate. We will also define new notation such as P := P(F) and Q := Q(F), whenever convenient.
We will use

D[Q, P] (0.7)

to denote a divergence between the measures Q and P , where a divergence satisfies

D[Q, P] ≥ 0 (0.8)

and

D[Q, P] = 0⇔ Q = P. (0.9)

Other divergences will follow similar notation and will be defined whenever they are used.
Other conventions that we follow include:

• EP [·] to denote expectation with respect to P , and
• [·]T to denote the matrix transpose.

2

1 Introduction

Uncertainty quantification (UQ) is an important research direction within the machine learning
community. As an approach, UQ can demonstrate desirable prediction behaviours such as out-of-
distribution (OOD) detection. In practice, quantifying uncertainty can provide valuable information
during high-risk situations and enable better informed decision-making.

There are a number of modelling approaches for uncertainty quantification. Bayesian approaches
are a common choice and generally provide more theoretically intuitive interpretations of uncer-
tainty compared to other methods. Our work focuses on a well-known Bayesian approach called
Gaussian processes (GPs), which we review in Section 2. GPs quantify uncertainty in the function
space domain but like most Bayesian approaches, they suffer from mis-specifications and computa-
tional intractability. The problem of GP intractability has motivated many variational approaches,
including the sparse variational GP (svGP) proposed by Titsias (2009). We review the svGP in
Section 3, but by operating within restrictive approximation spaces, we also recognise the limita-
tions of this approach. With a review of Knoblauch et al. (2022) in Section 4, we explain how
generalised variational inference (GVI) addresses the issues of mis-specification and intractability
prevalent in Bayesian inference. GVI re-contextualises Bayesian modelling within an optimisation-
centric learning framework. This is followed by a review of Gaussian Wasserstein inference (GWI)
from Wild et al. (2022) later in the same section, which extends GVI to function spaces. GWI
offers a solution to the restrictive approximation spaces of previous variational GP approaches, such
as the svGP.

Our contributions begin in Section 5, where we present a number of improvements to the GWI
learning framework. This includes new parameterisations for the prior kernel such as the neural
network GP (NNGP) kernel from Novak et al. (2019). We will also introduce new variational
kernels as well as faster numerical approximations of the GWI objective. This is followed by Sec-
tion 6, which introduces a new computationally cheap framework we call projected GVI (pGVI)
for GPs. pGVI offers more flexibility for defining learning objectives for variational GPs with a
new form of regularisation we call projected regularisation. This computes divergences between
scalar projections of GPs, providing significantly cheaper linear time computational costs compared
to the cubic costs of existing approaches. We also present an experimentation framework for our
contributions, summarised in Section 7. This includes the development of an extensive software
implementation designed for flexibility and scaleability, introducing appropriate abstraction archi-
tectures, and following best practices common in the software engineering community. This section
will also present our experimentation setup, with examples to show it in action. We conclude with
Section 8 proposing future research directions and final thoughts in Section 9.

3

2 Gaussian Processes

Gaussian processes (GPs) are powerful function approximators that can be used for both regres-
sion and classification tasks. The following sections will review GPs following Rasmussen (2003),
Matthews (2017), and Wild et al. (2022).

2.1 The Gaussian Process

A GP is a stochastic process such that for any N points X := {xn}N
n=1 where xn ∈ X , the

corresponding random response vector Y ∈ RN has the Gaussian distribution

Y ∼ N (m, K) , (2.1)

where m ∈ RN and K ∈ RN×N
≽0 . The mean vector m is constructed through the selection of a mean

function mapping m : X → R such that

m := [m(x1) · · ·m(xN)]T , (2.2)

while constructing K involves choosing a kernel function mapping k : X × X → R such that each
element of the matrix is the evaluation

[K]n,n′ := k(xn, xn′), (2.3)

for n, n′ = 1, . . . , N . K is also known as the Gram matrix. Appendix A.1 shows that choosing
kernel functions defined as inner products of a feature space mapping will ensure that K is a valid
positive semi-definite covariance matrix, as required in (2.1).

The distribution in (2.1) is a finite-dimensional instance of the GP random function mapping

F ∼ GP(m, k), (2.4)

where F := {F (x) : x ∈ X} such that a sample path from F has the mapping f : X → R. In other
words, choosing a mean and kernel to construct (2.4) ensures that any finite set of inputs will have
a consistent joint Gaussian distribution adhering to (2.1) such that

Y := [F (x1), . . . , F (xN)]T . (2.5)

GPs are a powerful modelling approach. With minimal restrictions for choosing the mean
and kernel function, there are endless possibilities for constructing expressive GP model spaces.
This control and visibility into the model’s behaviour is a strong advantage for GPs compared
to other approaches. Novak et al. (2019) explains that the GP is also an important construct
for understanding the theoretical properties of many neural network architectures at initialisation.
Showing that the infinite-width limit of many such architectures can be expressed as a GP has
provided a theoretical framework for analysing neural networks, which are typically viewed as black
box approaches. This further motivates the potential and importance of GPs.

4

2.2 Gaussian Process Regression

Consider the regression task where we have N observation pairs (X, Y) := {(xn, yn)}N
n=1 with

inputs xn ∈ X and responses yn ∈ R. GP regression models the data generating process as

yn ∼ F (xn) + ϵn, (2.6)

where the GP random function mapping F accounts for the epistemic (model) uncertainty and the
random scalar ϵn accounts for the aleatoric (measurement) uncertainty. In this formulation, we
assume that the aleatoric uncertainty is homoscedastic of the form

ϵn ∼ N
(
0, σ2) . (2.7)

In GP regression, the Bayesian posterior for a test point x ∈ X when conditioned on the training
data X and Y, acts as a ‘prediction’ for the epistemic uncertainty of the test data responses. With
all terms being Gaussian, this posterior has a closed-form conditional Gaussian expression. Having
also chosen the aleatoric data uncertainty to be modelled as Gaussian in (2.7), GP regression models
the test data response y ∈ R as

y|X, Y, σ2 ∼ N
(
m̄(x), k̄(x, x)

)
, (2.8)

with

m̄(x) = m(x) + Kx,X
(
KX,X + σ2I

)−1 (Y−mX) (2.9)

and

k̄(x, x) = k(x, x)−Kx,X
(
KX,X + σ2I

)−1 KX,x, (2.10)

where mX is more verbose notation for (2.2) and KX,X is verbose for (2.3). Kx,X ∈ R1×N and
KX,x ∈ RN×1 are row and column matrices respectively, constructed with X and x following (2.3).
I ∈ RN×N is the identity matrix.

2.3 Gaussian Process Classification

Consider the classification task where we have N observation pairs (X, Y) := {(xn, yn)}N
n=1 with

inputs xn ∈ X and label responses yn ∈ {1, . . . , J}. In other words, we wish to map each input xn

to one of J labels. Following the approach from Matthews (2017), GPs can be used for classification
through the model

Y ∼ C
(

s (F1(x), . . . , FJ(x))
)

, (2.11)

where we construct Fj ∼ GP (mj , kj) for each label j = 1, . . . J such that F1, . . . , FJ are stochasti-
cally independent, and s : RJ → ∆(J) is a mapping to a J dimensional probability simplex, which
parameterises the categorical distribution C. This means that the probability of the jth label is

5

given as

P(Y = j) = sj(F1(x), . . . , FJ(x)), (2.12)

the jth element of the probability simplex from s.

The Robust Max Function Matthews (2017) provides a few different choices for s in (2.11). We
follow Wild et al. (2022), using the robust max function to define the jth element of the probability
simplex with

sj (f1, . . . , fJ) =

1− δ, if j = arg maxj=1...J (fj) ,

δ
J−1 , otherwise,

(2.13)

where δ ∈ [0, 1]. Typically, δ is chosen as a very small value (i.e. 1e−2). Constructing the ∆(J)
vector with (2.13), we have the probability value of 1− δ for the label of maximum value and δ

J−1
otherwise. Wild et al. (2022) explains that this formulation provides robustness to outliers, as it
only considers the ranking of the GP models for each label.

A benefit of the robust max function is that the expected log-likelihood under the categorical
distribution in (2.11) becomes analytically tractable. Wild et al. (2022) shows that with N input
and response pairs, the expected log-likelihood is

E [log p (y|x)] ≈
N∑

n=1
log(1− ϵ)S(xn, yn) + log

(
ϵ

J − 1

)
(1− S(xn, yn)) , (2.14)

with

S(x, j) := 1√
π

I∑
i=1

wi

 J∏
j′=1,j′ ̸=j

ϕ

(
ξi

√
(2kj′(x, x) + mj(x)−mj′(x)√

kj′(x, x)

) (2.15)

and {wi, ξi}I
i=1 being the weights and roots of the Hermite polynomial of order I ∈ N. ϕ is the

standard normal cumulative distribution function.

6

3 Standard Variational Inference for Gaussian Processes

Although they are analytically tractable, a major drawback of GP models has been their inability
to computationally scale with respect to N , the number of training points. Both classification and
regression predictive posteriors rely on evaluating the inversion of an RN×N matrix in (2.9) and
(2.10). This operation has time complexity O(N3) and space complexity O(N2), both of which
quickly become problematic when scaling to larger-sized training sets. This problem has been a
serious limitation of GPs and has restricted their use to problem domains having smaller-sized data
sets.

This section will review standard variational inference (VI) for GPs and in particular, the sparse
variational GP (svGP) from Titsias (2009), to obtain computationally cheaper approximations of
the true predictive posterior. We will also discuss the challenges of learning within this framework.

3.1 Standard Variational Inference in Finite Dimensions

GPs are objects constructed in an infinite dimensional setting, however this section will first review
standard VI in a finite dimensional setting. A Bayesian modelling approach begins by assuming
that the data generating process for an observation is conditionally dependent on M unobserved
latent random variables Z ∈ XM through the observation likelihood p(Y = y|Z) and the prior p(Z).
These construct a belief update for the generating process called the Bayesian posterior given as

p(Z|Y = y) ∝ p(Y = y|Z)p(Z), (3.1)

which is often computationally and/or analytically intractable. This has motivated the need for
variational methods like VI to approximate (3.1). VI is based on the observation that the Kullback-
Leibler (KL) divergence between an arbitrary probability measure Q := Q(Z) and the true Bayesian
posterior in (3.1), which we denote P(Z|Y), can be rewritten as

KL [Q,P(Z|Y)] = L(Q)− log p(y), (3.2)

where p(y) =
∫

p(y|z)p(z)dz is the marginal log-likelihood and

L(Q) := −EQ [log p(y|Z)] + KL [Q, P] , (3.3)

such that P := P(Z) is the prior and KL [· , ·] denotes the KL divergence. It follows that

arg min
Q∈Q

KL [Q,P(Z|Y)] = arg min
Q∈Q

L(Q), (3.4)

where Q is a set of candidate probability measures. In other words, approximating the posterior
by minimising (3.2) is equivalent to minimising (3.3). Typically, Q is constructed with respect to
a parameter set Γ such that

Q := {Qγ : γ ∈ Γ} , (3.5)

7

where Γ is a Euclidean parameter space. Therefore solving

γ∗ ∈ arg min
γ∈Γ

L(Qγ) (3.6)

obtains the VI approximation of the Bayesian posterior minimising (3.2), denoted as Qγ∗ . Standard
VI depends on three important assumptions to ensure a reasonable approximation:

1. the parameterised set of measures Q is large enough to contain a reasonable approximation
of the true Bayesian posterior,

2. the parameterisation of Q ensures that L(Q) is tractable or easy to approximate, and
3. there exists an optimisation procedure that can find a reasonable minimiser γ∗.

These three assumptions are in tension with each other. For example, a larger approximation space
Q can cause L(Q) to be intractable or create a more difficult optimisation setup. However, VI can
be quite successful if employed by well-informed practitioners of the method.

3.2 Sparse1 Variational Gaussian Processes

To overcome the computationally intractable GP we review Titsias (2009), which proposes a vari-
ational approximation for the Bayesian predictive posterior in (2.8) as

Q(F) := GP(mQ, r), (3.7)

where the mean function is

mQ(x) = mP (x) + Kx,Z (KZ,Z)−1
µ, (3.8)

parameterised by µ ∈ RM , and the kernel function is

r(x, x) = k(x, x)−Kx,Z (KZ,Z)−1 KZ,x + Kx,Z (KZ,Z)−1 Σ (KZ,Z)−1 KZ,x (3.9)

with mP and k being the mean and kernel functions of the target GP that we want to approximate,
and parameterised by Σ ∈ RM×M

≽0 . Z ∈ XM is M inducing points, typically chosen as some subset
of X. This defines the parameter space

Γ =
{

µ ∈ RM , Σ ∈ RM×M
≽0 , Z ∈ XM

}
. (3.10)

Following (3.3), the variational loss for a candidate Q := Q(F) becomes

L(Q) = 1
N

N∑
n−1

EQ [− log p(yn|F (xn)] + KL
[
QF ,PF

]
, (3.11)

where the expectation in (3.11) is tractable, since F (xn) is Gaussian under Q. However it is unclear
if the KL divergence between two GPs in the second term is even well-defined and from a practical
viewpoint, computable. Matthews et al. (2016) points out that the choice of mQ and r by Titsias

1Also known as stochastic or scaleable variational Gaussian processes (svGPs)

8

(2009) ensures that

KL [GP (mQ, r) ,GP (mP , k)] = KL [N (µ, Σ) ,N (mZ, KZ,Z)] , (3.12)

reducing the KL divergence between two stochastic processes to

KL
[
QF ,PF

]
= 1

2

(
tr
(

(KZ,Z)−1 Σ
)
−M + (mZ − µ)T K−1

Z,Z (mZ − µ) + log
(

det KZ,Z

det Σ

))
,

(3.13)

the KL divergence between two finite dimensional Gaussian distributions on RM . Titsias (2009)
shows that for a given set of inducing points Z, the optimal choices µ∗ and Σ∗ to minimise (3.11)
have the closed forms

µ∗ = σ−2KZ,ZΨ−1KZ,X (Y−mX) (3.14)

and

Σ∗ = KZ,ZΨ−1KZ,Z, (3.15)

where

Ψ := KZ,Z + σ−2KZ,XKX,Z, (3.16)

conveniently eliminating the need for gradient-based optimisations such that γ = (µ∗, Σ∗, Z).
The svGP ensures matrix inversions of RM×M matrices with O

(
M3) time complexity , while

the operation KZ,XKX,Z in (3.16) is O
(
NM2). Thus, the overall time complexity of this approach

is O
(
NM2) with space complexity O (NM). This significantly improves the scaleability of GP

approaches from the standard GP in Section 2. M is typically chosen as O(N1/2) such that the
svGP has O(N2) and O(N3/2) time and space complexity respectively.

This svGP formulation provides a solution to the scaling issues of the GP, but illustrates how
the three assumptions of standard VI discussed in Section 3.1 can break down. In particular,
the variational set Q defined by the parameter set Γ may not be expressive enough to contain a
reasonable approximation of the true Bayesian posterior. For example, the mean function of the
true posterior with a zero mean GP can be expressed as the linear combination

m̂(x) =
N∑

n=1
αnk(x, xn) ∈ span ({k(·, x1), . . . , k(·, xN)}) , (3.17)

with [α1 · · ·αN]T = K−1
X,XY. On the other hand, the corresponding variational mean mQ in (3.8)

is only a linear combination within the inducing point space such that

mQ(x) =
M∑

m=1
βmk(x, zm) ∈ span ({k(·, z1), . . . , k(·, zM))}) , (3.18)

with [β1 · · ·βM]T = K−1
Z,Zµ. Choosing M as O(N1/2), it is not unlikely that the inducing point

9

space will be too small to contain a reasonable approximation of m̂. Wild et al. (2021) also makes
a similar argument for the posterior kernel. Burt et al. (2020a) explains that the KL divergence
between two GPs is not generally tractable or even finite. Thus within the Bayesian context of
functional VI, we are forced to restrict the variational set Q, to obtain a tractable loss L.

3.3 Inducing Point Selection

Within the context of VI, we wish to find an optimal set of inducing points Z such that

span ({k(·, x1), . . . , k(·, xN)}) ≈ span ({k(·, z1), . . . , k(·, zM))}) , (3.19)

where the inducing points can approximate the majority of the input space. Several existing ap-
proaches to inducing point selection include Smola (2000), Hensman et al. (2015), Li et al. (2016),
and Alaoui and Mahoney (2015). Algorithm 1 reviews an approach from Burt et al. (2020b), which
proposes an iterative procedure that greedily chooses the next inducing point based on the highest
marginal variance in the prior, when conditioned on the currently selected set of inducing points.

Algorithm 1 Greedy Variance Inducing Point Selection
m← 1
z1 ← arg maxx∈X k(x, x)
z← {z1} ▷ initialise selection set
while m < M do

zm+1 ← arg maxx∈X

(
diag

(
KX,X −KX,zmk (zm, zm)−1 Kzm,X

))
z← z ∪ {zm+1} ▷ add to the current selection set
m← m + 1

end while
return z

Figure 3.1 compares random selection to Algorithm 1 with MNIST data, selecting 10 inducing
points from 5000 for each digit. We see that the greedy variance approach is much more effective
at selecting a diverse set of images. Moreover, the images in Figure 3.1 were selected in order
from left to right. The first two images selected by greedy variance are generally two very different
variations of the digit. For example, the first image for ‘1’ is a single line slanted to the right
while the second image involves more strokes and slants left, showing how the algorithm greedily
minimises the variance across the candidate images.

Random Selection Greedy Variance Selection

Figure 3.1: Random Selection versus Algorithm 1

10

Algorithm 2 Prior Kernel Learning and Inducing Points Selection
Require: θ0 ▷ initial hyper-parameters of k

i← 0
Z0 ← GreedyVarianceSelection(X, θ0) ▷ via Algorithm 1 with k
U0 ← Y [X.index (Z0)] ▷ corresponding inducing point responses
while Zi ̸= Zi−1 do

θi+1 ← OptimiseNLL(θ0, Zi, Ui) ▷ via type-II maximum likelihood on inducing points
Zi+1 ← GreedyVarianceSelection(X, θi+1)
Ui+1 ← Y [X.index (Zi+1)]
i← i + 1

end while
return (θi, Zi)

The inducing point selection method in Algorithm 1 requires a pre-selected kernel. However in
practice, kernel selection generally involves negative log-likelihood (NLL) optimisation on training
data. In the case of learning the prior GP, this would involve learning the kernel hyper-parameters on
the selected inducing points. This presents a chicken and egg problem. Burt et al. (2020b) proposes
an EM-like approach, iteratively learning the kernel hyper-parameters and selecting the inducing
points with Algorithm 1 until the convergence of an evidence lower bound. Our implementation
takes a more naive approach, iterating between point selection and NLL minimisation until the
inducing points do not change. We summarise this approach in Algorithm 2.

Iteration 1

Iteration 3

Iteration 2

Iteration 4

Figure 3.2: Inducing Point Selection for Four Iterations of Algorithm 2 (black inducing points and

blue training/candidate points)

Algorithm 2 incorporates response data into the inducing point selection process, which did
not exist in Algorithm 1. Learning the kernel with the response data can give more appropriate
covariances when comparing candidate points during the inducing points selection of Algorithm 1.
Figure 3.2 visualises the inducing points selected in the first four iterations of Algorithm 2 for a
regression problem. This is overlaid with the Bayesian posterior of a GP parameterised with the

11

learned kernel and zero mean, when conditioned on those selected inducing points. This visualises
the selection procedure as it attempts to minimise uncertainty over training points, ensuring max-
imum coverage over the input space. By learning the kernel in-between iterations, we see that
Algorithm 2 can appropriately adjust the variances on the training data, which would be held fixed
during Algorithm 1.

In the loop of Algorithm 1, each element of the diagonal evaluation has time complexity O(M)
from matrix multiplication, so computing for all N candidate points along the diagonal is O(NM).
Selecting M inducing points, Algorithm 1 has O(NM2) time complexity . Choosing M as O(N1/2),
we have O(N2) time complexity and O(N) space complexity. Assuming Algorithm 2 loops for k

iterations, we have O(kN2) time complexity and the same space complexity as Algorithm 1.

12

4 Generalising Variational Inference for Gaussian Processes

The standard VI objective in (3.11) is the root cause of the restrictive variational set for the svGP.
This is because learning in the standard VI framework necessitates a KL divergence, which is often
ill-defined for GPs.

This section reviews generalised variational inference (GVI) in finite dimensions from Knoblauch
et al. (2022), a framework that does not rely on the KL divergence. GVI is a fundamental construct
for new realisations of variational inference frameworks. We also review Wild et al. (2022), which
extends GVI to an infinite dimensional setting and proposes Gaussian Wasserstein inference (GWI)
in function spaces. GWI constructs a learning framework that avoids the KL divergence for GPs,
providing richer approximation spaces for variational learning.

4.1 Generalised Variational Inference in Finite Dimensions

Extending the Bayesian posterior from (3.1) to N observations we have

qB(Z) := p(Z|Y = y) ∝ p(Z)
N∏

n=1
p(Y = yn|Z), (4.1)

where p(Z) is the prior for the latent variables and p(Y = y|Z) is the likelihood of an observation.
The Bayesian posterior qB(Z) is traditionally viewed as an updated belief for the latent variables
by incorporating the likelihood evaluation of new observations. This interpretation is commonly
cited in the context of statistical modelling, where practitioners are focused on obtaining the model
specification that characterises an underlying data generating process. The validity of this belief
update relies on three assumptions:

1. a well-specified prior,
2. a well-specified likelihood, and
3. an analytically and/or computationally tractable posterior, or the existence of a tractable and

reasonable VI approximation,

which are often violated in settings of larger-scaled models like Bayesian Neural Networks (BNNs).
In BNNs, Gaussian priors are generally chosen for computational convenience and are most

likely mis-specified in the Bayesian context. The likelihood evaluation of BNNs are also most defi-
nitely mis-specified, as it’s unlikely that evaluating such an over-parameterised model would provide
any meaningful insights into the data likelihood. Finally, the posterior of BNNs are often approx-
imated either through samplers or variational approximations. To achieve sampling convergence,
larger-scaled models may require much more computational resources and time than is practically
available. Moreover a reasonable variational approximation is also not always guaranteed, as dis-
cussed in Section 3.1.

Knoblauch et al. (2022) introduces a new interpretation of the Bayesian posterior, showing that
it solves the optimisation problem

qB(Z) = arg min
Q∈Q

{
EQ

[
N∑

n=1
ℓ (Z, yn)

]
+ D [Q, P]

}
(4.2)

13

when choosing Q as the space of all probability measures on Z, the negative log-likelihood ℓ(Z, y) =
− log p (y|Z), and the KL divergence D [Q, P] = KL [Q, P] with P as the prior. More generally, ℓ is
called the loss function and D is the divergence. With this interpretation, the Bayesian posterior is
the solution of a regularised empirical risk minimisation problem.

Framed through optimisation, the Bayesian posterior will always be a valid solution of (4.2),
regardless of the three assumptions required to ensure a valid Bayesian belief update. This is
more in-tune with practitioners of larger-scaled models who focus on obtaining superior predictive
performance rather than correct model specification. Knoblauch et al. (2022) also shows that
by generalising the Bayesian posterior within the learning framework of (4.2), any choice of prior
P , valid divergence D, loss ℓ, and approximation set Q will result in a generalised posterior that
maintains interpretations as a belief update. This more flexible inference approach will motivate
the replacement of the KL divergence between GPs that was problematic in standard VI.

4.2 Generalised Variational Inference on Function Spaces

This section reviews Wild et al. (2022), which extends GVI to infinite dimensional settings to
quantify uncertainties on function spaces and proposes a new framework for variational learning of
GPs. Wild et al. (2022) shows that GVI in function spaces involves solving

Q∗ = arg min
Q∈Q

{
EQ

[
N∑

n=1
ℓ(F, yn)

]
+ D [Q,P(F)]

}
, (4.3)

where Q ∈ Q is a variational family of probability measures on a function space F and P(F) is a
prior on F . Wild et al. (2022) explains that the Kolmogorov Extension Theorem guarantees that for
every GP, there exists a corresponding Gaussian measure (GM). This GM is usually over the trivial
function space F = {f : X → R}. However, this space is highly prone to support mis-match and
ensuring a tractable KL on F requires heavy restrictions on the variational family Q, as discussed in
Section 3.2. Instead, Wild et al. (2022) identifies the existence of GPs with corresponding GMs on
the Hilbert space of square integrable functions L2 (X , ρ,R) =

{
f ∈ F :

[∫
X f(x)2dρ(x)

]1/2
<∞

}
when the mean satisfies

m ∈ L2 (X , ρ,R) (4.4)

and the kernel satisfies ∫
k(x, x)dρ(x) <∞, (4.5)

also known as the trace-class kernel condition. We will denote L2 (X , ρ,R) as L2 for convenience.
These conditions guarantee that sample functions from the GP will have square-integrable paths
such that there exists P := N (m, C), a GM on L2 with the same mean m and a covariance operator

C(f) :=
∫

X
k(·, x)f(x)dρ(x), (4.6)

for any function f ∈ L2. With the GVI objective in (4.3), Wild et al. (2022) proposes Gaussian
Wasserstein inference (GWI), which replaces the KL divergence from standard VI with the squared

14

2-Wasserstein distance between GMs on Hilbert spaces

W [Q, P]2 = ∥mP −mQ∥2
2 + tr (CP) + tr (CQ)− 2 tr

[(
(CP)1/2

CQ (CP)1/2
)1/2

]
, (4.7)

which is always well-defined and does not have the support mis-match problem of the KL divergence.
The subscripts denote the respective GM of each term, tr is the trace of an operator, and (C)1/2

denotes the square root of the positive self-adjoint operator C. Most mean functions satisfy (4.4)
and most kernels satisfy (4.5), ensuring the existence of the corresponding Gaussian measures P

and Q on L2. This provides significantly more freedom for the variational set Q than the svGP
approach from Titsias (2009).

With GWI, Wild et al. (2022) proposes GWI-net, a variational GP parameterised with a neural
network mean to replace the svGP mean in (3.8). The experimental results of this approach in
Wild et al. (2022) show promising potential in both regression and classification tasks.

15

5 Improving Gaussian Wasserstein Inference

In this section, we propose improvements to GWI for GPs, the function space GVI framework from
Wild et al. (2022). We introduce new prior and variational kernels for GWI, further exploring
the flexibility of the learning framework. We also introduce a new modular GWI learning proce-
dure. GPs learned with this procedure will be called GWI-GPs. Finally, we introduce numerical
approximations of the Wasserstein distance that significantly improves inference speed.

5.1 Improved Kernel Selection

The GWI framework is parameterised in terms of the infinite-dimensional parameters:

• mP ∈ L2, a prior mean function,
• k : X × X → R, a prior (trace-class) kernel,
• mQ ∈ L2, a variational mean function, and
• r : X × X → R, a variational (trace-class) kernel

to construct the objective in (4.3). Wild et al. (2022) proposes GWI-net, parameterising mP as
the zero mean function, k as the ARD kernel, mQ as a neural network, and r as the svGP kernel.
The following sections will introduce new parameterisations for the prior and variational kernels.

5.1.1 Prior Kernels

The GWI-net construction from Wild et al. (2022) uses an ARD kernel for the prior given as

k(x, x′) = σ2
f exp

(
−1

2

D∑
d=1

1
α2

d

(xd − x′
d)2

)
, (5.1)

where σf > 0 is the kernel scaling factor and αd > 0 is the length-scale for each dimension d =
1, . . . , D. In structured data settings like images when it is important to learn correlations between
features, having an independent length-scale for each dimension can be less effective. We propose
using kernels that are better suited for structured data settings. These include the neural network
GP (NNGP) kernels from Novak et al. (2019) and a form of neural network kernels that we will
call custom feature mapping kernels.

NNGP Kernels Novak et al. (2019) shows that NNGP kernels are the infinite-width limit of
neural network architectures at initialisation. We suggest choosing NNGP kernels with architectures
known to be suitable for the given data domain (i.e. a convolutional neural network (CNN) for
image data). The learnable hyper-parameters of NNGP kernels are the variances of the weights
and biases for each infinite-width limit layer.

Figure 5.1 compares inducing point selection of different kernels for MNIST data (FCNN de-
notes a fully connected neural network). Using Algorithm 1, we selected 10 images from 5000 for
each digit. We also included random selection as a control for visual comparison. We observed that
NNGP kernels are much better at selecting different instances of the same digit, providing better
coverage of the data variation. On the other hand, the ARD kernel is comparable to random selec-
tion. This motivates the use of NNGP kernels in more structured data settings. These experiments
were performed without any training on the kernel hyper-parameters.

16

Random Selection ARD FCNN NNGP CNN NNGP

Figure 5.1: Inducing Point Selection with Different Kernels

Custom Feature Mapping Kernels We also explored neural network kernels of the form

k(x, x′) = k0(h(x), h(x′)), (5.2)

where h : X → RD is a mapping to a D-dimensional feature space and k0 : RD × RD → R is a
base kernel that can be any kernel function. We use Algorithm 2 to learn the hyper-parameters of
k0 and h. In our experiments, we chose non-stationary kernels for k0 to ensure non-zero gradients
for the Gram matrix diagonals k0(h(x), h(x)) with respect to the hyper-parameters of h. Like with
NNGP kernels, we suggest choosing a suitable neural network architecture for h depending on the
data domain.

FCNN Mapping CNN Mapping

Figure 5.2: Inducing Point Selection with Randomly Initialised Feature Mapping Kernels

FCNN Mapping CNN Mapping

Figure 5.3: Inducing Point Selection with Trained Feature Mapping Kernels

To motivate our approach, Figure 5.2 shows inducing points selected with Algorithm 1 using
randomly initialised custom feature mapping kernels and selecting from the same 5000 images of
each digit as for Figure 5.1. We chose k0 as a linear kernel and h as a neural network (FCNN or

17

CNN) with an output layer of D = 256 features. We observed that even with random initialisation,
the selected images are more diverse than the ARD kernel. Figure 5.3 visualises the inducing
points after learning the hyper-parameters of k with Algorithm 2. These images are qualitatively
comparable to those selected by NNGP kernels.

5.1.2 Variational Kernels

The svGP kernel is given as

r(x, x′) = k(x, x′)−Kx,Z (KZ,Z)−1 KZ,x′ + Kx,ZΣKZ,x′ , (5.3)

where Σ ∈ RM×M
≽0 is the hyper-parameter of r. Wild et al. (2022) proposes learning the positive

semi-definite matrix Σ by learning the parameters of L ∈ RM×M , a lower triangle matrix with
positive diagonal elements. As a Cholesky decomposition, this ensures that Σ = LLT ∈ RM×M

≽0 .
We call this the Cholesky parameterisation. This section introduces new parameterisations for the
svGP kernel followed by new forms of variational kernels.

svGP Parameterisations We introduce a new parameterisation of Σ called the diagonal pa-

rameterisation. The diagonal parameterisation learns

diag(v) : log(v) ∈ RM , (5.4)

where Σ = diag(v) ∈ RM×M
≽0 , a diagonal matrix of positive elements, and diag : RM → RM×M ,

using a vector in RM to construct a diagonal matrix in RM×M . Although this new parameterisa-
tion is more restrictive than the Cholesky parameterisation, it is computationally cheaper during
gradient-based learning and has shown to have comparable performance during our experiments.
This suggests that a Cholesky decomposition may be more expressive than needed for our purposes.

We also propose a base kernel parameterisation replacing Kx,ZΣKZ,x, the last term of (5.3)
such that

r(x, x′) = k(x, x′)−Kx,Z (KZ,Z)−1 KZ,x′ + r0(x, x′), (5.5)

where r0 is the base kernel, which can be any kernel function. We learn the hyper-parameters of r0

with GWI through gradient-based optimisation.

Sparse Posterior Kernels Inspired by the GP posterior covariance in (2.10) and the svGP
kernel from Titsias (2009), we present a new form of variational kernel we call sparse posterior

kernels with the formulation

r(x, x′) = r0(x, x′)− r0 (x, Z) r0 (Z, Z)−1
r0 (Z, x′) , (5.6)

where r0 is any base kernel learned during GWI such that r0 (x, Z) ∈ R1×M , r0 (Z, Z) ∈ RM×M , and
r0 (Z, x′) ∈ RM×1 are Gram matrices of r0 following the construction in (2.3). In our experiments,
we chose r0 as the same kernel as the prior kernel k. We also initialised its hyper-parameters with
the hyper-parameters of k. Treating k (Z, Z)−1 as a pre-computed constant, sparse posterior kernels
are O(M2) to evaluate.

18

Fixed Sparse Posterior Kernels During GP prediction with sparse posterior kernels, the in-
version r0 (Z, Z)−1 is a constant. However during inference, gradients must pass through it to learn
the parameters of the base kernel. Thus, we also present a fixed version of the sparse posterior
kernel

r(x, x′) = r0(x, x′)− r0 (x, Z) k (Z, Z)−1
r0 (Z, x′) , (5.7)

where the matrix inversion is a constant during inference and defined with respect to the prior
kernel. This option provides faster training, no longer needing gradients to pass through a matrix
inversion.

5.2 An Improved Learning Procedure

We improve on the GWI learning procedure from Wild et al. (2022) with Algorithm 3. This
algorithm abstracts the specific parameterisation of GWI-nets. It also includes an inducing point
selection method, whereas Wild et al. (2022) selected inducing points randomly. The rest of this
section provides further details for certain steps of this procedure.

Algorithm 3 GWI-GP Learning
Require: k, mQ, r ▷ use zero mean for mP

(θ, Z) ← KernelAndInducingPoints(k) ▷ via Algorithm 2, θ are hyper-parameters of k
P ← (k, θ) ▷ construct prior/regulariser GP
Q← (mQ, r, Z) ▷ construct GWI-GP
(γmQ

, γr) ← OptimiseGWI(P , Q) ▷ via GWI, γmQ
, γr are hyper-parameters of mQ, r

γr ← OptimiseTemper(γr) ▷ via type-II maximum likelihood on a validation set
return (γmQ

, γr)

The Regulariser The prior is an essential component of a Bayesian posterior. However in the
context of GVI, the prior can be interpreted as a regulariser for empirical risk minimisation. To
prevent confusion in this discussion, we will call this the regulariser. In our experiments, we explored
traditional regularisers constructed with the standard GP prior, having O(1) time complexity .
Additionally, we propose another option for the GP regulariser

y|Z, U, σ2 ∼ N
(
m̄P (x), k̄(x, x)

)
, (5.8)

a ‘lightweight’ Bayesian posterior using the inducing points Z ∈ XM and corresponding responses
U ∈ RM . This regulariser would violate the traditional interpretation of a prior as it would
explicitly use training data twice during inference. However, we weaken this interpretation with
the optimisation-centric nature of GVI, viewing this as a potentially better-informed regulariser
than the unconditioned GP prior. Our experiments show that this less-than traditional regulariser
can sometimes construct a better learning objective for GWI-GPs. Moreover, with inversions of
RM×M matrices only, we maintain computational tractability when evaluating the GWI objective.

19

Tempering Wild et al. (2022) and Adlam et al. (2020) explain that tempering the predictive
posterior of GPs can improve predictive performance and has theoretical interpretations for correct-
ing against a mis-specified prior. Following Wild et al. (2022), we temper GWI-GPs by learning a
factor αT > 0 for the tempered kernel formulated as

rT (X, X) = αT

(
r(X, X) + σ2I

)
, (5.9)

where αT is learned through negative log-likelihood optimisation on Q (mQ, rT) with a hold-out
validation set. The rest of the GP hyper-parameters are held fixed during this process. This forms
the final GWI-GP such that the predictive posterior is given as

y ∼ N
(
mQ(x), αT

(
r(x, x) + σ2)) . (5.10)

Tempering is also applied to classification by constructing
[
α1

T . . . αJ
T

]T ∈ [0,∞)J , a separate tem-
pering factor for each GP, and optimising the classification log-likelihood in (2.14).

Untempered Tempered

Figure 5.4: Tempering the GWI-GP (black inducing points, blue training points, green validation

points, and orange test points)

Figure 5.4 visualises an extreme example of a GP before and after tempering. We observe that
αT is essentially ‘squeezing’ the variance to more appropriate uncertainty bounds for the data, while
the rest of the GP’s behaviour remains the same.

5.3 Wasserstein Distance Approximations

Wild et al. (2022) provides the batched approximation of the Wasserstein distance from (4.7) for
N data points as

W [Q, P]2 ≈ 1
NB

NB∑
nb=1

(mP (xnb
)−mQ(xnb

))2

+ 1
NB

NB∑
nb=1

k(xnb
, xnb

) + 1
NB

NB∑
nb=1

r(xnb
, xnb

)

− 2√
NBNS

NS∑
ns=1

√
λns

(
r (XNS

, XNB
) k (XNB

, XNS
)
)
, (5.11)

where NB < N and NS < N for two independent batches. λn : RNS×NS → R evaluates the nth

eigenvalue. We introduce further numerical approximations of (5.11) to improve computation speed.

20

Symmetric Matrices In our experiments, we use the same data sample for XNB
and XNS

, to
ensure symmetric square matrices for r (XNS

, XNB
) and k (XNB

, XNS
) in the eigendecomposition

term of (5.11). This allows us to take advantage of eigenvalue properties of symmetric matrices,
further explained in Appendix A.2. We use symmetric matrices to leverage the eigendecomposition
implementation in version 0.4 of Python JAX, which is only available on GPUs for symmetric
matrices. Our experiments showed that using the same batch for XNS

and XNB
doesn’t seem to

make any significant difference on the resulting GWI-GP.

Dropping the Eigendecomposition The eigendecomposition in the last term of (5.11) is com-
putationally expensive with O(N3) complexity, which in our case is the sample size NS . In our
GWI experiments we often dropped this term with negligible practical effects. This suggests that
for our use cases, the correlation constraints imposed by the eigendecomposition is a less essential
contributor to achieving good prediction performance. This imprecise regulariser, which caused
minimal change to our inference results, was significantly counteracted by much faster training
speeds.

21

6 Projected Generalised Variational Inference for Gaussian Processes

This section proposes projected GVI (pGVI) for GPs, a new framework to learn variational GPs that
we call pGVI-GPs. pGVI uses the same learning procedure in Algorithm 3, except it replaces the
Wasserstein regularisation with a new form of regularisation that we call projected regularisation.
Projected regularisations are computationally cheap, making pGVI an extremely attractive option
in practice. We will present the general projected regularisation formulation followed by different
constructions of the pGVI objective.

6.1 Projected Regularisation

The GVI framework from Knoblauch et al. (2022) assumes

D [Q, P] = 0⇔ P = Q, (6.1)

in other words, that the regulariser D is definite. We weaken this assumption and propose regu-
larisers of the form

D [Q, P] = 1
N

N∑
n=1

D0

[
Q (F (xn)) ,P (F (xn))

]
, (6.2)

where xn ∈ X and D0 is a (base) regulariser between two probability measures on R. Specifi-
cally, since both the variational approximation and regulariser are GPs, we have that Q (F (xn)) =
N (mQ(xn), r(xn, xn)) and P (F (xn)) = N (mP (xn), k(xn, xn)). Therefore any base regulariser
D0 that can be computed between two scalar Gaussian random variables will lead to a tractable
regulariser computation and therefore a tractable variational loss. We call regularisation schemes
following (6.2), projected regularisation.

Projected regularisations were inspired by the experimental observation that dropping the eigen-
decomposition in the GWI objective (5.11) had negligible effect on the training procedure. By only
regularising against the marginal function values in (6.2), we are similarly unconstrained with re-
spect to correlations. However our experiments show that this can be a sufficient regulariser to
recover most of the benefits of GVI in terms of uncertainty quantification. This suggests that in
practice, the assumption of a definite regulariser may sometimes be overly strict. In most VI use
cases where Q is an approximation, we would rarely expect to actually be in a setting where Q

matches our target posterior. The experimental success of projected regularisation suggests that a
regulariser D[Q, P] ≥ 0 having capacity to prevent overfitting to the empirical risk may be sufficient
to provide a reasonable learning objective for GVI.

The experimentally-driven approach of pGVI is attractive because it is computationally cheaper
than GWI or any other previous approaches to function space VI. The base regularisers that we
propose have O(1) time complexity with respect to a training input xn. For a batch of NB points
we have O(NB), much faster than O(N3

B) for the Wasserstein distance in (5.11). Other approaches
like Rudner et al. (2020), Sun et al. (2019), Ma et al. (2019), and Ma and Hernández-Lobato (2021)
generally attempt to stochastically approximate a function space KL divergence with some finite
N -dimensional realisation, also having complexity O(N3

B). This makes the linear time complexity
of pGVI an extremely attractive approach in practice.

22

6.2 Base Regularisers

We now review the base regularisers D0 used in our experiments. These provide different construc-
tions of the pGVI objective, demonstrating the modularity of our approach. In the following, we
denote Qx := Q (F (x)), Px := P (F (x)), µp := mP (x), µq := mQ(x), σ2

p := k(x, x), and σ2
q := r(x, x).

The Bhattacharyya distance Given as

B [Qx, Px] = 1
4

(µp − µq)2

σ2
p + σ2

q

+ 1
2 log

(
σ2

p + σ2
q

2σpσq

)
. (6.3)

The Wasserstein distance Given as

W [Qx, Px]2 = (µp − µq)2 + σ2
p + σ2

q − 2σpσq (6.4)

for Gaussians on R.

The Hellinger divergence Given as

H [Qx, Px] = 1−
√

2σpσq

σ2
p + σ2

q

exp
(
−1

4
(µp − µq)2

σ2
p + σ2

q

)
. (6.5)

The KL divergence Given as

KL [Qx, Px] = log σq

σp
+

σ2
p + (µp − µq)2

2σ2
q

− 1
2 (6.6)

for Gaussian on R.

The α-Renyi divergence Given as

Rα [Qx, Px] = log σp

σq
+ 1

2(α− 1) log
(

σ2
p

ασ2
p + (1− α)σ2

q

)
+ 1

2
α (µp − µq)2

ασ2
p + (1− α)σ2

q

, (6.7)

with ασ2
p + (1− α)σ2

q > 0.

A naive divergence Finally, we also experimented with a naive divergence

N [Qx, Px] = (µp − µq)2 +
(
σ2

q − σ2
p

)2
, (6.8)

combining the squared difference of the means and covariances.

23

7 Experimentation Framework

This section presents the experimentation framework that we developed for GWI-GPs and pGVI-
GPs. We begin by summarising our implementation architecture followed by a description of our
experimentation setup. This is followed by some results for 1-D regression problems to show our
framework in action. Our Python implementation is openly available on GitHub1. It should be
noted that our implementation collects the terms svGP, GWI-GP, and pGVI-GP under the umbrella
name ‘approximate GP’.

7.1 Implementation Architecture

GWI and pGVI are both highly flexible learning frameworks. As such, abstraction was critical
for ensuring scaleable and maintainable implementations. Luckily, the GVI framework proposed
by Knoblauch et al. (2022) naturally translates to an architecture that we outline with the UML
class diagram in Figure 7.1. For visual clarity, we only included relevant attributes and methods.
We see that the GVI objective in (4.3) with ℓ and D has been abstracted to accommodate any
valid empirical risk and regularisation, respectively. These abstractions are exactly mirrored in our
implementation architecture as abstract base classes, ensuring that the same interface is maintained
for all child classes.

GVI
empirical risk : EmpiricalRisk
regularisation : Regularisation
calculate (γ , X , Y) : float

<<abstract>>
EmpiricalRisk

Q : ApproximateGP
calculate (γ , X , Y) : float

NegativeLogLikelihood CrossEntropy

<<abstract>>
Regularisation

P : ExactGP
θ : ExactGP Parameters
Q : ApproximateGP
mode : {‘prior’, ‘posterior’}
calculate (γ , X) : float

Wasserstein
include eigendecomp. : bool

<<abstract>>
ProjectedRegularisation

Bhattacharyya

Wasserstein Hellinger KL Renyi
α : float

SquaredDifference

Figure 7.1: GVI Implementation Architecture

Algorithms 1, 2, and 3 are abstracted for any mean, kernel, and variational kernel. We developed
the architecture in Figure 7.2 for our implementation of GPs, Figure 7.3 for mean functions, and
Figure 7.4 for kernels. These architectures are also exactly reflected in our code base.

Our implementation is in Python and predominantly uses JAX, a high-performance numerical
computing package developed by Bradbury et al. (2018). Because there is currently no existing sta-

1For the most up-to-date version, see: https://github.com/jswu18/gvi-gaussian-process

24

https://github.com/jswu18/gvi-gaussian-process
https://github.com/jswu18/gvi-gaussian-process

<<abstract>>
GP

m : Mean
k : Kernel

<<abstract>>
ExactGP

X : array
Y : array
predict (θ , x) : Distribution

<<abstract>>
GPRegression

dist. : Dist. = Gaussian

<<abstract>>
GPClassification

dist. : Dist = Multinomial

<<abstract>>
ApproxGP

predict (γ , x) : Distribution

ExactGPRegression ApproxGPRegression ExactGPClassification ApproxGPClassification

<<abstract>>
Mean

predict (θm , x) : array

<<abstract>>
Kernel

gram (θk , x) : array

Figure 7.2: GP Implementation Architecture

<<abstract>>
Mean

predict (θm , x) : array

ConstantSVGP
mP : Mean
θmP

: Mean Parameters
k : Kernel
θk : Kernel Parameters
Z : array

NeuralNetwork
architecture : list

Figure 7.3: Mean Function Implementation Architecture

<<abstract>>
Kernel

gram (θk , x) : array
Polynomial

degree : float

ARD CustomFeatureMapping
k0 : Kernel
h : NeuralNetwork

NNGP
architecture: list

<<abstract>>
Approximate

Z : array

<<abstract>>
SVGP

k : Kernel
θk : Kernel Parameters

SparsePosterior
r0 : Kernel

FixedSparsePosterior
k : Kernel
θk : Kernel Parameters
r0 : Kernel

CholeskySVGP DiagonalSVGP KernelisedSVGP
r0 : Kernel

Figure 7.4: Kernel Function Implementation Architecture

25

ble, well-maintained, and well-documented implementation of GPs using JAX, we developed many
of our implementations from scratch. We chose JAX for its currently growing user-base, unique
customisations, and to ensure compatibility with the implementation of NNGP kernels by Novak
et al. (2019), which is also developed in JAX. We chose Python for its current popularity within the
machine learning community. We also incorporated a number of commonly used implementation
techniques whenever necessary, such as adding jitter and using the Cholesky decomposition for
matrix inversions.

We use a number of standard software engineering tools to ensure a scaleable, maintainable,
and controlled environment for our growing code base. We introduced strict typing controls for
all model parameter classes with Pydantic base models from Colvin et al. (2023). Pydantic mod-
els enforce typing hints during run-time that would otherwise be considered ‘syntactic sugar’ in
Python. This also provides clear guidelines when constructing models within our implementation
framework. We also included a rigorous number of tests that currently has 95% test coverage
over the implementations found in the src/ directory, much higher than needed in most software
development projects. This also includes the use of mockers for isolated testing environments of
different components (i.e. mean and kernel mockers to isolate testing of GP implementations).
Finally, we use Poetry developed by Eustace to strictly control package requirements, ensuring the
version compatibility of dependencies.

7.2 Experiment Scaling

In addition to our implementation architecture, we developed a scaleable approach to experimen-
tation. Implemented in the experiments/ directory, we constructed schemas and resolvers for each
abstraction that we described in Section 7.1. This allowed us to define and construct experiments
through .yaml configuration files. Each .yaml outlines the settings of an experiment (the GP, learn-
ing objective, learning rate, optimiser, etc.). Appendix A.3 shows example .yaml configuration files
for training a regulariser GP and an approximate GP .

Generating configuration files was automated, allowing us to scale our experiments to all possible
combinations of empirical risks, regularisers, mean functions, and kernels. These configurations
were then submitted as jobs to a computing cluster, running our experiments in a well-organised
environment.

7.3 Regression Curve Experiments

To demonstrate our experimentation framework, we trained approximate GPs for ten different
regression curve problems. Randomly selected segments of each curve were removed from the
training data to simulate an out-of-distribution (OOD) setting.

Using our framework, we constructed 1260 combinations of experiment settings, each defined
through .yaml configuration files. Each setting includes a unique combination of constructions for
the regulariser GP, the approximate GP, and the GVI objective, among other parameters. The lists
of options for each section that we explored are outlined in Appendix A.4. After running all 1260
combinations, we selected the experiment having the best validation set negative log-likelihood.

26

Curve 1

Curve 3

Curve 5

Curve 7

Curve 9

Curve 2

Curve 4

Curve 6

Curve 8

Curve 10

Figure 7.5: Best Performing Approximate GPs with respect to Validation Set NLL (black inducing

points, blue training points, green validation points, and orange test points)

27

The best performing approximate GPs are shown in Figure 7.5. Our framework is quite success-
ful at learning the training data for all the curve examples. With the exception of Curve 4, they also
demonstrate reasonable behaviours in the OOD setting. Table 7.1 outlines the configurations for
each best performing GP. Appendix A.4 contains further details for each setting. Interestingly, in
some cases it was actually better to use fewer inducing points with M = O(N1/3). We also see that
optimal settings can vary quite significantly. This demonstrates the flexibility of GWI and pGVI
to accommodate the specific variational space and learning objective that may be best suited for a
given problem. Please refer to the experiments/toy_curves/ directory to reproduce our results.

Problem M = O(N1/α) k(x, x′) r(x, x′) P Mode D[· , ·] ℓ.r.

Curve 1 α = 2 1-layer-tanh-fcnn-nngp diagonal-svgp prior proj-renyi 1e-2

Curve 2 α = 3 1-layer-tanh-fcnn-mapping-linear-base sparse-posterior prior proj-bhattacharyya 1e-4

Curve 3 α = 2 ard sparse-posterior posterior proj-renyi 1e-4

Curve 4 α = 3 1-layer-tanh-fcnn-nngp diagonal-svgp posterior proj-bhattacharyya 1e-4

Curve 5 α = 2 ard fixed-sparse-posterior prior proj-bhattacharyya 1e-4

Curve 6 α = 2 1-layer-tanh-fcnn-nngp kernelised-svgp prior proj-hellinger 1e-2

Curve 7 α = 2 ard kernelised-svgp posterior proj-bhattacharyya 1e-3

Curve 8 α = 2 1-layer-tanh-fcnn-nngp diagonal-svgp prior proj-renyi 1e-4

Curve 9 α = 2 ard kernelised-svgp posterior proj-hellinger 1e-4

Curve 10 α = 2 ard kernelised-svgp prior proj-bhattacharyya 1e-2

Table 7.1: Best Performing Settings with respect to Validation Set NLL

28

8 Future Work

This section discusses potential future extensions of our work. In particular, we will discuss applica-
tions to different problem domains that can push the limits of GWI and pGVI. This will hopefully
provide additional feedback and understanding into the strengths and limitations of our approaches.
By leveraging our code base, most of these extensions will involve minimal implementation work.

UCI Regression Benchmarking Many variational GP approaches such as Wild et al. (2022),
Blundell et al. (2015), Gal and Ghahramani (2015), Li and Gal (2017), Ma and Hernández-Lobato
(2021), Ma et al. (2019), and Sun et al. (2019) benchmark their approaches with standard UCI
regression datasets. The next step in our work will be to benchmark the experimentation framework
we proposed in Section 7 with these datasets. This will provide better understanding of GWI-GPs
and pGVI-GPs within the context of the existing literature for function space VI.

Image Classification A differentiating feature of GWI is the freedom to parameterise the vari-
ational GP with any mean and kernel. Wild et al. (2022) shows promising experimental results
for GWI within the context of image classification by parameterising the variational mean with a
CNN. However, they use an ARD kernel to construct their svGP variational kernel.

We showed that the kernels in Section 5.1.1 have the potential to better quantify uncertainty in
images by leveraging the more structured nature of the data. A natural next step is to explore the
performance of GWI-GPs and pGVI-GPs with these NNGP kernels and custom feature mapping
kernels in combination with the new variational kernels proposed in Section 5.1.2. With the classi-
fication GP implementations in our code base, one could extend our current work to this use-case
with relative ease.

NLP Classification GWI and pGVI introduces flexibility and computational performance pre-
viously unavailable to variational GP learning. This motivates us to explore the limits of these
learning frameworks with larger data settings, such as problems in the Natural Language Process-
ing (NLP) domain. Candidate problems include sentiment analysis and named-entity recognition
(NER), which would both be implementation extensions of an image classification model.

Attention networks are a fundamental building block for transformer models, the default archi-
tecture used by the NLP community at the moment. Hron et al. (2020) proposes the existence of
infinite-width attention networks. These could be used to parameterise GPs within our VI frame-
works. Alternatively, the custom feature mapping kernel proposed in (5.2) can accommodate any
feature mapping for h, including pre-trained transformer embedding models. These would both be
reasonable approaches for constructing variational GPs in the NLP domain.

29

9 Conclusions

Generalised variational inference (GVI) proposed by Knoblauch et al. (2022) is an exciting devel-
opment within the field of Bayesian inference. An infinite dimensional realisation of GVI, Gaussian
Wasserstein inference (GWI) from Wild et al. (2022), establishes a new direction for function space
variational inference, pivoting from previous approaches to the problem. This has only started to
demonstrate the potential of GVI, when applied to Gaussian processes (GPs).

Through the modular nature of Algorithm 3 and new kernel parameterisations, we further
explored the flexibility of GWI. With projected GVI (pGVI), we experimentally showed that weak-
ening the assumption of a definite regulariser in GVI can still maintain a sensible loss objective for
GP variational learning. Compared to the cubic time complexity of previous methods, projected
regularisation is shown to be an attractive and practical linear time alternative. pGVI is an even
more flexible learning framework and improves the accessibility of GPs for new problem domains
that we hope to explore in the future.

Our proposed methods were developed in an experimentally-driven environment, primarily mo-
tivated to improve the computational and predictive performance of variational GPs. We hope that
our contributions have inspired helpful insights into function space variational inference and will
provide practical tools for future work with Gaussian processes.

30

Bibliography

Ben Adlam, Jasper Snoek, and Samuel L Smith. Cold posteriors and aleatoric uncertainty. arXiv

preprint arXiv:2008.00029, 2020.

Ahmed Alaoui and Michael W Mahoney. Fast randomized kernel ridge regression with statistical
guarantees. Advances in neural information processing systems, 28, 2015.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural network. In International conference on machine learning, pages 1613–1622. PMLR,
2015.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dou-
gal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

David R Burt, Sebastian W Ober, Adrià Garriga-Alonso, and Mark van der Wilk. Understanding
variational inference in function-space. arXiv preprint arXiv:2011.09421, 2020a.

David R Burt, Carl Edward Rasmussen, and Mark Van Der Wilk. Convergence of sparse variational
inference in gaussian processes regression. The Journal of Machine Learning Research, 21(1):
5120–5182, 2020b.

Samuel Colvin, David Montague, Adrian Garcia Badaracco, Hasan Ramezani, Eric Jolibois, Marcelo
Trylesinski, Terrence Dorsey, pyup.io bot, Serge Matveenko, Arseny Boykov, Sebastián Ramírez,
David Hewitt, Nikita Grishko, Koudai Aono, Yurii Karabas, Vitaly Samigullin, Stephen Brown
II, Viicos, Amin Alaee, Davis Kirkendall, layday, Yasser Tahiri, Daniel Smith, Marc Mueller,
Nuno André, Hmvp, John Carter, and Ofek Lev. pydantic/pydantic: v2.3.0, August 2023. URL
https://doi.org/10.5281/zenodo.8277473.

Sébastien Eustace. Poetry. URL https://github.com/python-poetry/poetry.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Insights and applica-
tions. In deep learning workshop, ICML, volume 1, page 2, 2015.

James Hensman, Alexander Matthews, and Zoubin Ghahramani. Scalable variational gaussian
process classification. In Artificial Intelligence and Statistics, pages 351–360. PMLR, 2015.

Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak. Infinite attention: NNGP
and NTK for deep attention networks. In Hal Daumé III and Aarti Singh, editors, Proceedings of

the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine

Learning Research, pages 4376–4386. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.

press/v119/hron20a.html.

Jeremias Knoblauch, Jack Jewson, and Theodoros Damoulas. An optimization-centric view on
bayes’ rule: Reviewing and generalizing variational inference. Journal of Machine Learning

Research, 23(132):1–109, 2022.

31

http://github.com/google/jax
https://doi.org/10.5281/zenodo.8277473
https://github.com/python-poetry/poetry
https://proceedings.mlr.press/v119/hron20a.html
https://proceedings.mlr.press/v119/hron20a.html

Chengtao Li, Stefanie Jegelka, and Suvrit Sra. Fast dpp sampling for nystrom with application to
kernel methods. In International Conference on Machine Learning, pages 2061–2070. PMLR,
2016.

Yingzhen Li and Yarin Gal. Dropout inference in bayesian neural networks with alpha-divergences.
In International conference on machine learning, pages 2052–2061. PMLR, 2017.

Chao Ma and José Miguel Hernández-Lobato. Functional variational inference based on stochastic
process generators. Advances in Neural Information Processing Systems, 34:21795–21807, 2021.

Chao Ma, Yingzhen Li, and José Miguel Hernández-Lobato. Variational implicit processes. In
International Conference on Machine Learning, pages 4222–4233. PMLR, 2019.

Alexander G de G Matthews, James Hensman, Richard Turner, and Zoubin Ghahramani. On
sparse variational methods and the kullback-leibler divergence between stochastic processes. In
Artificial Intelligence and Statistics, pages 231–239. PMLR, 2016.

Alexander Graeme de Garis Matthews. Scalable Gaussian process inference using variational meth-

ods. PhD thesis, University of Cambridge, 2017.

Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A Alemi, Jascha Sohl-Dickstein,
and Samuel S Schoenholz. Neural tangents: Fast and easy infinite neural networks in python.
arXiv preprint arXiv:1912.02803, 2019.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer school on machine

learning, pages 63–71. Springer, 2003.

Tim GJ Rudner, Zonghao Chen, and Yarin Gal. Rethinking function-space variational inference in
bayesian neural networks. In Third Symposium on Advances in Approximate Bayesian Inference,
2020.

Alexander J Smola. Sparse greedy matrix approximation for machine learning. In Proceedings of

the 17th international conference on machine learning, June 29-July 2 2000. Morgan Kaufmann,
2000.

Shengyang Sun, Guodong Zhang, Jiaxin Shi, and Roger Grosse. Functional variational bayesian
neural networks. arXiv preprint arXiv:1903.05779, 2019.

Michalis Titsias. Variational learning of inducing variables in sparse gaussian processes. In Artificial

intelligence and statistics, pages 567–574. PMLR, 2009.

Veit Wild, Motonobu Kanagawa, and Dino Sejdinovic. Connections and equivalences between the
nyström method and sparse variational gaussian processes. arXiv preprint arXiv:2106.01121, 2021.

Veit David Wild, Robert Hu, and Dino Sejdinovic. Generalized variational inference in function
spaces: Gaussian measures meet bayesian deep learning. Advances in Neural Information Pro-

cessing Systems, 35:3716–3730, 2022.

32

A Appendix

A.1 Positive Semi-Definite Kernels

Given a kernel function k : X × X → R defined as an inner product of features in some feature
space H such that

k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H, (A.1)

where ϕ : X → H, a Gram matrix K ∈ RN×N defined element-wise as

[K]n,n′ = k(xn, xn′) (A.2)

for any N points X = {xn}N
n=1 with xn ∈ X , and any vector v ∈ RN then

vT Kv =
N∑

n=1

N∑
n′=1

vnvn′ ⟨ϕ(xn), ϕ(xn′)⟩H (A.3)

=
〈

N∑
n=1

vnϕ(xn),
N∑

n′=1

vn′ϕ(xn′)
〉

H

(A.4)

=
∥∥∥∥∥

N∑
n=1

vnϕ(xn)
∥∥∥∥∥

2

≥ 0 (A.5)

showing that K is a positive semi-definite matrix.

33

A.2 Symmetric Matrix Eigenvalues

For square symmetric matrices A, B ∈ RN×N ,
√

AB
√

A is also a symmetric matrix where
√

A is
the square root such that A =

√
AT√A. Moreover, it can be shown that

λn (AB) = λn

(√
AB
√

A
)

(A.6)

for all n = 1, . . . , N , where λn(·) computes the nth eigenvalue.

34

A.3 Example Experiment Configurations

1 data_name : 604913 dc3af2417 fb 1d5a21ea26e4afd
2 empir ica l_r i sk_break_condit ion : −10
3 empir ical_risk_schema : n e g a t i v e _ l o g _ l i k e l i h o o d
4 induc ing_points :
5 induc ing_points_factor : 1 . 0
6 inducing_points_power : 3
7 inducing_points_selector_schema : c o n d i t i o n a l _ v a r i a n c e
8 k e r n e l :
9 kernel_kwargs :

10 input_shape :
11 − 1
12 l a y e r s :
13 layer_1 :
14 layer_kwargs :
15 f e a t u r e s : 10
16 layer_schema : dense
17 layer_2 :
18 layer_kwargs : n u l l
19 layer_schema : tanh
20 kernel_parameters : n u l l
21 kernel_schema : nngp
22 number_of_iterat ions : 5
23 save_checkpoint_frequency : 1000
24 t r a i n e r _ s e t t i n g s :
25 batch_drop_last : f a l s e
26 b a t c h _ s h u f f l e : t r ue
27 batch_size : 1000
28 l e a r n i n g _ r a t e : 0 .0001
29 number_of_epochs : 10000
30 optimiser_schema : a d a b e l i e f
31 seed : 0

Figure A.3.1: Regulariser GP Example Configuration YAML

35

1 empir ical_risk_schema : n e g a t i v e _ l o g _ l i k e l i h o o d
2 k e r n e l :
3 kernel_kwargs :
4 d i a g o n a l _ r e g u l a r i s a t i o n : 1 . 0 e−10
5 i s _ d i a g o n a l _ r e g u l a r i s a t i o n _ a b s o l u t e _ s c a l e : f a l s e
6 kernel_parameters : n u l l
7 kernel_schema : s p a r s e _ p o s t e r i o r
8 mean :
9 mean_kwargs :

10 nn_function_kwargs :
11 input_shape :
12 − 1
13 l a y e r s :
14 layer_1 :
15 layer_kwargs :
16 f e a t u r e s : 10
17 layer_schema : dense
18 layer_2 :
19 layer_kwargs : n u l l
20 layer_schema : tanh
21 layer_3 :
22 layer_kwargs :
23 f e a t u r e s : 1
24 layer_schema : dense
25 seed : 0
26 number_output_dimensions : 1
27 mean_parameters : n u l l
28 mean_schema : custom
29 reference_name : 7 b386a3 fa f1 f4b79ac6 f f6604b6bc932
30 r e g u l a r i s a t i o n :
31 r e g u l a r i s a t i o n _ k w a r g s :
32 mode : p o s t e r i o r
33 alpha : 0 .5
34 r eg u l ar i sa t io n _ sc h em a : p r o j e c t e d _ r e n y i
35 save_checkpoint_frequency : 1000
36 t r a i n e r _ s e t t i n g s :
37 batch_drop_last : f a l s e
38 b a t c h _ s h u f f l e : t r ue
39 batch_size : 1000
40 l e a r n i n g _ r a t e : 0 .001
41 number_of_epochs : 50000
42 optimiser_schema : a d a b e l i e f
43 seed : 0

Figure A.3.2: Approximate GP Example Configuration YAML

36

A.4 Regression Curve Experiment Settings

The following tables outline the options for each setting in Table 7.1. Taking all combinations of
these settings generates 1260 unique experiments.

M = O
(

N1/α
)

α = 2

α = 3

Table A.4.1: Number of Inducing Points (α is the root factor)

k(x, x′) Description

1-layer-tanh-fcnn-mapping-linear Feature Mapping Kernel: single-layer FCNN & tanh activations with linear base kernel

1-layer-tanh-fcnn-nngp NNGP Kernel: single-layer FCNN & tanh activations

ard ARD Kernel

Table A.4.2: Regulariser GP Kernel

r(x, x′)

cholesky-svgp

diagonal-svgp

fixed-sparse-posterior

kernelised-svgp

sparse-posterior

Table A.4.3: Approximate GP Kernel

P Mode

posterior

prior

Table A.4.4: Regulariser GP Mode

D[· , ·]

proj-bhattacharyya

proj-hellinger

proj-kl

proj-renyi

proj-squared-difference

proj-wasserstein

wasserstein-partial

Table A.4.5: GVI Regularisation (‘partial’ indicates dropping the eigendecomposition term)

ℓ.r.

1e-2

1e-3

1e-4

Table A.4.6: GVI Learning Rate

37

	Notation
	Introduction
	Gaussian Processes
	The Gaussian Process
	Gaussian Process Regression
	Gaussian Process Classification

	Standard Variational Inference for Gaussian Processes
	Standard Variational Inference in Finite Dimensions
	Sparse Variational Gaussian Processes
	Inducing Point Selection

	Generalising Variational Inference for Gaussian Processes
	Generalised Variational Inference in Finite Dimensions
	Generalised Variational Inference on Function Spaces

	Improving Gaussian Wasserstein Inference
	Improved Kernel Selection
	Prior Kernels
	Variational Kernels

	An Improved Learning Procedure
	Wasserstein Distance Approximations

	Projected Generalised Variational Inference for Gaussian Processes
	Projected Regularisation
	Base Regularisers

	Experimentation Framework
	Implementation Architecture
	Experiment Scaling
	Regression Curve Experiments

	Future Work
	Conclusions
	Bibliography
	Appendix
	Positive Semi-Definite Kernels
	Symmetric Matrix Eigenvalues
	Example Experiment Configurations
	Regression Curve Experiment Settings

