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BIOMEDICAL NAMED-ENTITY RECOGNITION
Jian Shu (James) Wu

Biomedical Named-Entity Recognition (BioNER) is an important area of research in the
field of Biomedical Information Extraction. BioNER is a unique challenge in natural lan-
guage processing (NLP) due to the limited amount of labelled BioNER corpora available
for both training and evaluating BioNER models. This report presents a novel approach
to BioNER which uses transfer learning techniques in NLP. A new architecture, BERT,
which has shown state-of-the-art results in multiple NLP tasks is applied to BioNER. We
call this model BERT-Bio-NER. BERT-Bio-NER shows promising results in BioNER and
has the potential to avoid problems of over fitting associated with current state-of-the-art
BioNER models. This report presents BERT-Bio-NER as not only a viable candidate for
replacing current state-of-the-art BioNER models, but also as a promising future research
direction for developing models for biomedical information extraction in general.
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CHAPTER 1
INTRODUCTION

1.1 Motivation
PubMed contains more than 28 million citations for biomedical literature [1]. Such an

overwhelming quantity of published literature makes it difficult for scientists to stay up
to date in their research field. Because of this, Information Extraction (IE) from biomedical
literature has been an active area of research in the domain of natural language processing
(NLP). The task of biomedical IE can be divided into a number of sub-tasks, each depen-
dent on the previous sub-task. These sub-tasks are Named Entity Recognition (NER),
Named Entity Linking (NEL), and Relation Extraction (RE). NER involves categorizing
words or phrases of interest in a given text. In the biomedical context, this entails labelling
entities (words or phrases) with tags such as genes, proteins, diseases, and species. NEL
involves the linking of entities tagged by NER to a unique identifier in external biomedical
databases. Finally, RE involves the detection of relations between entities. For example,
recognizing that the expression of gene A has an inhibitory effect on the expression of
protein B is an RE task. Because the sub-task of Biomedical Named-Entity Recognition
(BioNER) continues to be an active field of research and the dependence of NEL and RE
on BioNER, my undergraduate thesis research focuses on the problem of Named Entity
Recognition for biomedical literature.

1.2 Problem Statement
BioNER has been approached by a number of ”traditional” machine learning and prob-

abilistic models as well as more ”modern” deep learning techniques, with varied success.
This is due to a number of difficulties unique to BioNER.

Genes, proteins, diseases, and species in biomedical literature can often be long
compound-word phrases. As such, acronyms are commonly used to abbreviate these
long phrases (i.e. TCF). However, there are many inconsistencies in the use of acronyms
across biomedical literature [2]. For example, TCF can refer to ”T-cell Factor” or ”Tissue
Culture Fluid” depending on the context of the biomedical paper [2]. As such, for any
BioNER model to be successful, it must have some degree of context driven tagging. This
limits or complicates potential solutions such as rule-based tagging.

Because BioNER is a relatively niche research area, the limited labelled corpora avail-
able for model training and evaluation (in the case of deep learning) is another important
challenging factor to this problem. Modern supervised deep learning approaches require
massive amounts of labelled data. As such, despite the promising performance of recent
neural network solutions in this field, they have been shown to exhibit over-fitting and
limited model generalization, suggesting that the current models are not yet ready for de-
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ployment in practical settings [3]. This is likely due to the limited availability of labelled
biomedical corpora during model training.

With these difficulties in mind, my research will focus on exploring and evaluating
the success of a somewhat new approach to BioNER, transfer learning. This technique
involves the fine-tuning of an existing deep learning language model for the specific pur-
poses of BioNER. Although researchers in the past have found it difficult to successfully
implement transfer learning in the field of NLP, transfer learning is a well-known and
established technique in deep learning applications for computer vision. My undergrad-
uate thesis will explore the success of different methods for fine-tuning a language model,
BERT, for the purposes of BioNER. This approach is especially promising for BioNER be-
cause it seems to have the potential to address some if not all of the difficulties outlined
above. By utilizing an existing language model that has already ”learned” the basics of
language, we will only need to slightly modify the network to ”learn” the specific con-
ventions of ”biomedical language”.
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CHAPTER 2
EXISTING BIONER MODELS

2.1 Dictionary Models
Early solutions in BioNER involved generating massive dictionary look-up tables [4].

Methods from [4], depict the extraction of symbols, alias names, and full names, of genes
and proteins, from prominent gene and protein databases of the time (HUGO, TREMBL,
and Swiss-Prot). This data was compiled into a dictionary object that was then curated to
resolve ambiguities, redundancies, and irrelevant synonyms [4]. Thus, when presented
with a new biomedical abstract, each word was tokenized following a search through the
constructed dictionary [4]. Although they have a relatively simple architecture, dictionary
models are limited in their ability to discern acronym ambiguity.

2.2 Machine Learning Models
The machine learning models depicted in this section all involve some form of super-

vised learning, where a cost or prediction computed from a labelled corpus is minimized.
However, unlike deep learning models, these machine learning models use hand-selected
features to extract relevant information from tokens, before training or performing tag
prediction. This dependence on manual feature selection can be effective when there is a
limited amount of labelled data, as is the case for BioNER. As such, some of these models
have been relatively successful in the field of BioNER in the past.

2.2.1 Support Vector Machines (SVMs)
Support Vector Machines (SVMs) have been explored as a possible approach to

BioNER [5]. Tokens are first mapped to vectors in a hyper-parameter space using hand-
picked features, such as the index position of word in a predefined vocabulary, pre-
fixes/suffixes, and the presence of sub-strings or root words. SVMs then attempt to deter-
mine hyper-planes that separate these vector points into regions, according to their token
labels. The optimal hyper-plane is derived by maximizing the margin of the hyper-plane.
The margin is defined as the distance between the nearest data points and the hyper-plane
boundary. Maximizing this distance allows the hyper-plane to find the optimal ”middle”
boundary separation between token classification. The model then predicts the tag of a
new token from its vector mapping in the hyper-parameter space.

2.2.2 Maximum Entropy Models
Taking a more probabilistic approach to the problem, maximum entropy models at-

tempt to predict the tag classification likeliness for a token, given a set of features of that
token. The conditional probabilities are generated from a labelled training corpus, while
the prediction or evaluation of the model involves the following equation, as depicted in
[6]:
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p(o|h) =
1

Z(h)

∏
i

α
fi(h,o)
i

where p(o|h) is the probability of tag o given the prior information derived from la-
belled training corpora, h. This is computed by taking each predefined feature fi and
learning its weight αi given h and o. Z(h) is the normalization term and takes the form:

Z(h) =
∑

0

∏
i

α
fi(h,o)
i

The prediction of a tag is made by taking the tag with the highest probability. For [6],
features were hand-picked and included a context window, providing the two previous
and the two next tokens, capitalization, digit information, and the presence of special
characters (i.e. dashes and commas).

2.2.3 Hidden Markov Models (HMMs)
When given a sequence of n tokens, w = {w1,w2, ...wn}, Hidden Markov Models (HMM)

predict a sequence of n tags, t = {t1, t2, ..., tn}. Denoting T as the set of all possible sequences
of t, an example second order HMM formula from [7], predict a sequence t̂ such that,

t̂ = argmax
t∈T

[logP(t1) + logP(t2|t1) +
n∑

i=3

logP(ti|ti−1, ti−2) +
n∑

i=1

logP(wi|ti)]

HMMs are similar to Maximum Entropy Models in the sense that they also take a
probabilistic approach to the problem. However, HMMs have a stronger emphasis on
incorporating context into its probabilistic prediction. Instead of predicting the tag of
each token individually, HMMs maximize the probability of a tag sequence. Like the
Maximum Entropy Models, the conditional probabilities in the equation above would
be derived from a labelled training corpus. Although for HMMs, this process is proba-
bly computationally heavier due to the incorporated conditional dependence of past tag
predictions and tokens. Moreover, HMMs also require feature extraction for probability
calculations. For most BioNER HMMs, these features are generally hand-picked [7], [8],
[9].

2.2.4 Conditional Random Fields (CRFs)
Conditional Random Fields (CRFs) are a more generalized form of Hidden Markov

Models. To see this, suppose the model is again considering a sequence of n tokens,
w = {w1,w2, ...wn} and predicting a sequence of n tags, t = {t1, t2, ..., tn}. Let s j(t) = {t j−k+1, ...t j},
where k is a chosen number of previous tags to consider. For CRFs, m number of feature
functions, f (s j(t),w j), are defined. Each of these feature functions mathematically cap-
tures some association between the jth token and the previous k tags up until and includ-
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ing the jth tag. Moreover, let λi be the learned weight of the ith feature function. Again,
denoting T as the set of all possible sequences of t, as explained by [10], CRFs predict a
sequence t̂ such that,

t̂ = argmax
t∈T

exp
( n∑

j=1

m∑
i=1

λi fi(s j(t),w j)
)

By defining suitable features and weights, it is possible to show that HMMs are simply
a subset of CRFs.

Similar to both Maximum Entropy Models and Hidden Markov Models, CRFs also
generally involve the hand-selection of a set of features. However, CRFs seem to be much
more generalized and include a training process for weighting these features to maxi-
mize performance. CRFs have been depicted as models that reduce the problem of NER
to selecting an appropriate set of features [11]. Although it should be noted that man-
ual feature selection is not exactly a trivial task. For many CRFs, features may include
orthographic features (spelling, hyphenation, capitalization, etc.), semantic features (pre-
fixes, suffixes, etc.), and induction features (dependence on previous tags or tokens) [11],
[10], [12].

2.3 Recurrent Neural Network Models (RNNs)
A class of artificial neural networks, Recurrent Neural Networks (RNNs) are heavily

used in NLP [13]. At its simplest, RNNs have an input, output, and hidden layer. The
hidden layer ”recurrently” feeds back into itself allowing the network to store information
in its hidden layers, to be used at a later time. This lends itself very well to processing
data such as language, where there is a strong temporal dependence between words.

Figure 2.1: RNN Unit

[13]

2.3.1 Word Embeddings
Similar to the machine learning models discussed earlier, RNNs models also require

their word inputs to be in some vector-form representation. These word representations
are then used as input data for training the actual models. For machine learning, these
representations are typically hand-picked features. However, for deep learning models,
these vector representations are typically learned models that were trained on massive
data sets. For example, Word2vec, a prominent word embedding model, was trained
using a 1.6 billion word data set [14]. Having access to large amounts of labelled data,
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sufficient processing speeds, and an appropriately designed model architecture, word
embeddings seem to be much more effective at translating words into a vector space
representation, compared to traditional hand-picked features [14], [15].

2.3.2 Long Short-term Memory (LSTM)
A specific type of RNNs, Long Short-term Memory (LSTM) Units, demonstrate much

better performance than basic RNN models due to their complex model structure. This
structure includes gated control of the input, internal state, and output. Consider a se-
quence of n input vectors x1, x2, ..., xn, each being the word embedding of a token from
an input sentence. Let h1,h2, ...,hn be the output sequence of the LSTM. The following
formulas were adapted from [16]. W are weight matrices and b are bias vectors, learned
during the training phase of the model.

At step t, it is computed from a linear combination of xt (the new input vector), ht−1 (the
output vector of the previous iteration), and ct−1 (the memory vector from the previous
iteration):

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)

This acts as a ”filter”, where only relevant information is allowed to pass into the
network. With it, the model computes ct (the new memory vector) and ht (the new output
vector):

ct = (1 − it) � ct−1 + it � tanh(Wxcxt +Whcht−1 + bc)

ot = σ(Wxoxt +Whoht−1 +Wcoct−1 + bo)

ht = ot � tanh(ct)

where � is element-wise multiplication.
Here, the internal memory of the network, ct is computed by combining the new in-

formation (xt and it) and states from the previous iteration (ct−1 and ht−1). The output of
the model at iteration t, ht, involves the current memory state ct, as well as the previous
memory state ct−1, computed as part of ot.

This depicted method of ”gating/filtering” allows information to be retained for much
longer periods of time inside the network [17] compared to most other RNN structures,
that may experience issues such as the ”vanishing gradient problem” [18]. The vanishing
gradient problem is when input data has a limited effect on the output because too many
iterations of the RNN have passed by [18]. This can be problematic when earlier data
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may be required to provide context in understanding new data [18]. As such, words from
the beginning of a sentence providing context to the end of the sentence may no longer be
preserved in a typical RNN model. LSTMs are powerful models that can mitigate these
issues. They are used quite prevalently for NLP tasks [13].

2.3.3 Bi-LSTM-CRF
Currently one of the dominant model architectures in BioNER, Bi-LSTM-CRF models

combine word embeddings, LSTM models, and CRFs to form a complex network [3].
The model uses two LSTM models. Given an input sentence, x1, x2, ..., xn, the first LSTM
considers the sentence in order x1, x2, ..., xn, producing an output

−→
ht at each time step,

while the second LSTM considers the sentence in reverse order, xn, xn−1, ..., x1, producing
an output

←−
ht [16]. This is to capture contextual information, which may have forward or

backward dependence. Concatenating the output of the LSTMs at each time step, we get
ht = |

−→
ht ;
←−
ht |. Interestingly, this Bi-LSTM model is used as the feature function for a CRF

model. By combining a probabilistic CRF model with a complex Bi-LSTM feature extrac-
tion function, Bi-LSTM-CRF models have achieved the current state of the art results for
BioNER.

Researchers have explored variations of this model to improve performance, includ-
ing the use of word embeddings and/or character embeddings before feeding into the
Bi-LSTM network [16], [2], [19], as depicted in Figure 2.2. Moreover, adding a fully con-
nected layer after the Bi-LSTM layer and before the CRF layer has been shown to improve
performance [2]. Different training methods have also been explored such as multi-task
learning [19] and techniques to overcome the limited data sets available for BioNER [2],
showing that the training process can also have an effect on model performance.

Figure 2.2: Bi-LSTM-CRF with Character and Word Embeddings

[16]
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2.4 Current State-Of-The-Art BioNER Performance
Table 2.1 presents results comparing the F1 scores of current state-of-the-art BioNER

models for a number of corpora. The Literature Best column will compared against the
preliminary results of the new model proposed in this report.

Entity Corpus Crichton et al. (2017) Habibi et al. (2017) Wang et al. (2018) Giorgi and Bader (2018) Giorgi and Bader (2019) Literature Best
Chemicals BC4CHEM 82.95% 86.62% 89.37% 88.46% 89.37%

BC5CDR 89.22% 91.05% 91.64% 92.82% 92.82%
CRAFT 80.00% 84.98% 84.98%

Diseases BC5CDR 80.46% 83.49% 82.32% 84.49% 84.49%
NCBI-Disease 80.46% 84.64% 86.14% 84.72% 87.01% 87.01%
Variome 86.05% 85.45% 85.75% 86.05%

Species CRAFT 97.74% 96.28% 97.74%
Linnaeus 83.98% 93.40% 93.54% 89.44% 93.54%
S800 72.10% 74.98% 72.75% 74.98%

Genes/proteins BC2GM 73.04% 78.57% 80.74% 78.66% 81.48% 81.48%
CRAFT 75.16% 84.46% 84.46%
JNLPBA 69.73% 77.25% 80.92% 80.92%

Table 2.1: State-of-the-art BioNER F1 Performance

[3]
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CHAPTER 3
LANGUAGE MODELS, TRANSFER LEARNING, AND BERT

This section provides background to the BioNER approach that is explored for this
undergraduate thesis.

3.1 Language Models
Language models are an important task in the field of NLP [13]. Language models take

a sequence of words from a sentence as its input and attempts to predict the next word
of the sequence [13]. Early language modelling involved probabilistic approaches, while
more recently, neural networks have shown promise in this field [13].

3.2 Transfer Learning
Despite being a well-established technique in the field of computer vision, implement-

ing transfer learning in the context of NLP has not been nearly as wide-spread [20].
Instead of training a new neural network model from scratch (i.e. random initialization
of model weights), transfer learning aims to transfer a portion of learned weights from
an already trained model over to this new untrained model [21]. This can significantly
reduce the training time required for this new model [21]. Moreover, this technique can
reduce the amount of labelled data required to train the new model [21].

Figure 3.1: Transfer Learning for CNNs

[21]

An example of successful transfer learning in computer vision is the reuse of con-
volution layers of a convolutional neural network (CNN) for image recognition [21], as
depicted in Figure 3.1. The first few convolution layers of a CNN are typically associated
with general feature detection (i.e. recognizing lines, shapes, etc.) [21]. As such, when
training a new image recognition model, it would likely also need the same capacity for
general feature detection. This explains why ”transferring” certain pre-trained layers will
work and can significantly reduce the training time of a new network.

There are also some examples of transfer learning in NLP. One such example that has
already discussed is the use of word embeddings [20]. These are essentially pre-trained
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models that generate vector space representations of words that are added to the first
layers of many NLP models [20], such as Bi-LSTM-CRF. Despite word embeddings being
used in most state-of-the-art NLP models, the main tasks of these NLP models must still
be trained from scratch [20].

3.3 BERT
The BERT model, or Bidirectional Encoder Representations from Transformers, ties to-

gether many of the concepts discussed earlier. BERT is a pre-trained language model with
the versatility to be re-purposed for a wide range of language tasks [22]. A few relevant
neural network structures will be explored before presenting BERT’s architecture.

3.3.1 RNN Encoder-Decoder
RNN encoder-decoder architectures were initially developed for machine translation,

translating a sentence from one language to another [23]. These models typically involved
two RNNs. The first RNN would encode the source sentence x = {x1, x2, ..., xn}, where xi

is a vector representation of each input token. At each step, t, the encoder RNN output
would be he

t . The following equations were adapted from [23] to maintain consistent
notation in this report. Figure 3.2 is a visual representation to help guide the equations.

Figure 3.2: RNN Encoder-Decoder

[24]

The encoder network computes:

he
t = f e(xt, he

t−1)

Letting c = he
n, c can be expressed as some function q of {he

1, ..., h
e
n}:

c = q({he
1, ..., h

e
n})

The second RNN is the decoder RNN. It proceeds to ”unravel” c, which is a single
vector composed from the entire input sequence {x1, x2, ..., xn}. The hidden state of the
decoder at step t is:

hd
t = f d(hd

t−1, yt−1, c)

10



where

P(yt|yt−1, yt−2, ..., y1,C) = g(hd
t , yt−1, c)

yt is computed by taking the output with the maximum probability.
As outlined in [24], the RNN Encoder-Decoder is trained by maximizing the condi-

tional log-likelihood:

argmax
θ

1
N

N∑
i=1

logpθ(yi|xi)

where θ are the model parameters of the two RNNs.

3.3.2 Attention
Although encoder-decoder models are able to collapse variable length sequences

{x1, x2, ..., xn} into a single vector c, this can be problematic when trying to ”unravelling”
a sequence of information {y1, y2, ..., yn} from a single vector [23]. To mitigate this, a bi-
directional RNN is used in the encoder, similar to the bi-directional LSTM used in the
Bi-LSTM-CRF model, in addition to the implementation of an attention mechanism in the
decoder [23].

As described in [23], the attention mechanism introduces a slight difference in the
decoder RNN from the previous section. This is seen in the probability computation of
the output at step t:

P(yt|yt−1, yt−2, ..., y1, ct) = g(hd
t , yt−1, ct)

Instead of a single c vector, used to decode the entire output sequence, attention in-
troduces a ct unique to step t, defined as a linear combination of the hidden units of the
encoder:

ct =

n∑
i=1

αt,ihe
i

where each output of the encoder he
i is weighted by αt,i such that:

αt,i =
exp(et,i)∑n

j=1 exp(et, j)

and

et,i = a(hd
t−1, h

e
i )
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The function a is the alignment model, which scores how well the input vectors near
position i match to the output vectors near the position t [23]. One can imagine for lan-
guage translation, corresponding words might show up in different parts of a sentence
due to their different grammar structures. For example, ”blue car” in English is trans-
lated to ”voiture bleue” in French, where the noun and adjective ordering is reversed.
The function a tries to capture this alignment between the two languages

Figure 3.3 provides a visual representation of the attention mechanism. Note that the
notation in the figure is different than presented in this report.

Figure 3.3: Attention Mechanism

[23]

3.3.3 Transformers
Also initially developed for machine translation, the general idea of the transformer

model architecture is to stack attention mechanisms and fully connected layers [25]. The
transformer structure is depicted in Figure 3.4. The encoder and decoder being the left
and right halves of the transformer, are composed of repeating modules [25]. For the en-
coder, each module is composed of an attention and a fully connected layer [25]. For the
decoder, each module is composed of an attention and fully connected layer as well as an
attention layer over the output of the encoder stack [25]. Unlike encoder-decoder atten-
tion models, transformers only use attention and fully connected layers [25]. Without any
recursive components, transformers have significant advantages over the previous RNN
models [25]. Having a purely feed-forward architecture significantly reduces the compu-
tational complexity compared to training an unrolled RNN [25]. Moreover, transformers
allow for more parallelization during training because outputs are no longer dependent
on previous results, as is the case in RNN models [25]. Finally, transformers eliminate the
vanishing gradient problem because the entire network is feed-forward. This also allows
for long-range dependencies of input vectors [25].
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Figure 3.4: The Transformer Architecture

[25]

3.3.4 BERT Architecture
BERT’s model architecture is constructed from multiple layers of bi-direcitonal trans-

former encoders [22].The BERT model is depicted in Figure 3.5. By adding an additional
output layer to BERT to define a new model with a specific language task, the previously
pre-trained weights of BERT can be transferred over to the new model [22]. As such, one
would only need to fine-tune the added output layers to the specific task [22]. This is a
ground-breaking application of transfer learning in NLP.

Figure 3.5: BERT Model Architecture

[22]
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CHAPTER 4
THE BERT-BIO-NER MODEL

Due to the promising application of BERT for a number of different language tasks
[22], we explored the idea of fine-tuning BERT for the task of BioNER.

4.1 Model Architecture
As described in their paper, by feeding BERT’s final hidden representation into a clas-

sification layer trained over a labelled NER corpus, BERT was successfully fine-tuned
to out-perform state-of-the-art models for a number of NER tasks [22]. By restructuring
code from a PyTorch implementation of Google’s BERT [26], we mimicked the architec-
ture modifications depicted in the BERT paper, to approach NER tasks. The new BERT-
Bio-NER model, having a core BERT model with pre-trained weights, was then trained
with labelled BioNER corpora. The below figure depicts the model architecture.

Figure 4.1: BERT-Bio-NER Model Architecture

[26]

4.2 K-Fold Cross-Validation Training
To achieve preliminary ”proof-of-concept” results for BERT-Bio-NER, K-fold cross-

validation was used to train and evaluate the model’s performance.

4.2.1 Training Method
The K-fold cross validation method is a well-established training technique in machine

learning. Unlike the traditional train, test, and validation data split, this technique in-
volves first splitting the data set into k equal partitions [27]. The model is then trained on
k − 1 partitions of the data and tested on the kth partition [27]. This is done k times, so that
each partition is left out once and tested on the model that was trained on the k − 1 other
partitions [27].

This method is generally much better at getting more realistic representations of a
model’s performance [27]. This is because in the event that one partition might be ”easier”
or ”harder” to get good results on, this result will be averaged out across the performance
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of the other partitions [27]. On the other hand, when training on a single train, test,
and valid split, by chance the split could generate better or worse performance, simply
depending on how the data was split. This can be mitigated with cross validation.

For BERT-Bio-NER, each corpus was partitioned into 5 folds for cross validation. Av-
eraging the performance across these 5 folds provided a much better representation of the
model performance.

4.2.2 Performance Results
Without any hyper-parameter optimization or special training techniques, these results

were gathered to gauge the potential of the BERT-Bio-NER model. Figure 4.2 compares
the F1 scores of BERT-Bio-NER against current state of the art BioNER performance. The
performance of BERT-Bio-NER was acquired using 5-fold cross validation.

Figure 4.2: State-of-the-art vs. BERT-Bio-NER F1 performance

[3]

The percentage difference was computed with the following formula:

FBERT
1 − FLit−Best

1

FLit−Best
1

× 100%

An average 0.70% increase in F1 score across the available corpora suggests that BERT-
Bio-NER is indeed a promising approach to BioNER. Please see Table 6.1 for a full break-
down of the performance results.
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4.3 Multi-Task Learning
It is expected that the performance from the previous section will continue to improve

with future revisions of the BERT-Bio-NER model. In particular, model generalizability
is an important concern when considering potential real world deployment of the model.
As described in [3], current state-of-the-art BioNER models are unable to achieve high
performance outside of the corpus that they were trained on. As such, we explored the
generalizability of BERT-Bio-NER. Due to the core BERT model being pre-trained on mas-
sive data sets, we expected the BERT-Bio-NER model to be much better with respect to
out-of-coprus performance.

As discussed in [3], using multi-task learning seems to significantly boost out-of-
corpus performance. As such, we decided to use this training method to explore the
out-of-corpus performance of BERT-Bio-NER.

4.3.1 Training Method
The intuition behind multi-task learning is to train a single model for a number of

different but related tasks. [28]. This technique helps the models generalize in their tasks,
by exposing them to domain information from the related tasks [28].

For our purposes, these different but related tasks will be the different biomedical cor-
pora. The idea is to share the same core BERT model across our BERT-Bio-NER models for
each corpus. In this way, BERT will be exposed to more biomedical text during the train-
ing process to help it learn signals specific to biomedical literature. Figure 4.3 presents a
comparison of the previous single-tasked learning approach vs. the multi-task learning
used in this section, for BERT-Bio-NER.

Figure 4.3: Multi-Task Learning for BERT-Bio-NER

Given the limited amount of data available for training BioNER models, multi-task
learning tries to solve this problem by combining the data of multiple corpora and train-
ing it on a single BERT model. With more data, the model is much less likely to over-fit
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to a specific corpus. Moreover, for a smaller corpus, multi-task learning will likely help
with the performance because the model will be able to learn domain knowledge from a
larger related corpus.

The models were trained using the multi-task training technique with corpora of the
same entity type. Given that there are three corpora available for each entity type (chem-
icals, diseases, species, and genes/proteins), each model was trained on two of the three
corpora. The model was then evaluated on these two corpora for in-corpus performance
and also evaluated on the third corpora for out-of-corpus performance. This method of
evaluation was borrowed from [3].

4.3.2 Performance Results
Figure 4.4 compares the F1 scores of BERT-Bio-NER single task learning against BERT-

Bio-NER multi-task learning, out-of-corpus performance.

Figure 4.4: Single Task Learning vs Multi Task Learning for BERT-Bio-
NER

Again, the percentage difference was computed with the formula:

FMultiTask
1 − FS ingleTask

1

FS ingleTask
1

× 100%

There was an average 15.89% increase in F1 score for out-of-corpus performance after
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using multi-task learning. For most models, out-of-corpus performance either stayed the
same or increased. This suggests that multi-task learning is quite effective at boosting out-
of-corpus performance. Moreover, multi-task learning did not seem to negatively impact
in corpus performance at all. Performance results showed that in corpus performance
barely changed after applying the multi-task learning technique. Please see Table 6.2 for
a full breakdown of the performance results.
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CHAPTER 5
DISCUSSIONS AND CONCLUSIONS

5.1 BERT-Bio-NER is a Promising Approach
The results presented in this report suggest that the BERT-Bio-NER model is a very

promising approach for future research in the field of biomedical named-entity recog-
nition and biomedical information extraction as a whole. With 5-Fold Cross-Validation
Training, we have shown that a ”vanilla” implementation of BERT-Bio-NER without
hyper-parameter optimization or special training techniques can achieve state-of-the-art
performance across most BioNER corpora. With more fine-tuning, it is very likely that
we can significantly improve performance of this model. Moreover, these models were
trained for about 10 epochs, whereas training Bi-LSTM-CRF models typically took up to
50 epochs. This reduction in training time itself presents BERT-Bio-NER as an extremely
attractive alternative to previous state-of-the-art model architectures.

Out-of-corpus performance has long been a crippling drawback to most models in the
field of bio-NER. [3] has shown that many current state-of-the-art models suffer from an
inability to generalize. This has been one of the main reasons why these models have
not been deployed for real-world applications. However, our results concerning out-of-
corpus performance of BERT-Bio-NER have proven to be very promising in this respect.
With a 15.89% increase in out-of-corpus F1 performance, multi-task learning for BERT-
Bio-NER seems to be an effective method of preventing over fitting and maintaining
model generalization.

Interpreting Figure 4.4, we can see some interesting trends. For example, when using
single task learning on smaller corpora, the out-of-corpus performance of these models
is generally quite poor. This is understandable because the lack of training data would
make it more difficult for the model to generalize. However, with multi-task training,
the core BERT model is trained on a second corpora in addition to the smaller corpora.
This provides parts of the model with more data during training and as such, a better
ability to generalize. An example of this is for ”Train on S800 Test on CRAFT” under the
Species entity. Because S800 is a relatively small corpora, using multi-task learning seems
to significantly boost (56.23%) out of corpus performance F1 accuracy. The model became
exposed to more training data during multi task learning and as such, was less likely to
over fit to the small corpora.

5.2 Future Work
These BERT-Bio-NER results show exciting potential that we are exploring a promising

solution to BioNER. However, there are still many unexplored research directions that
are likely to improve the current model’s performance. Moreover, there are many other
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exciting applications of BERT in the field of biomedical information extraction that have
yet to be explored.

5.2.1 Hyper-parameter Tuning
These BERT-Bio-NER results were trained without any hyper-parameter tuning. These

hyper-parameters could include the learning rate, the architecture of the output NER
layer, the batch size, and the number of training epochs. With hyper-parameter tuning, it
is likely that we will be able to further improve the performance of BERT-Bio-NER.

5.2.2 Relation Extraction
Given the promising results of BERT-Bio-NER, it may be possible to approach the prob-

lem of relation extraction in a similar manner of transfer learning. It would be very
exciting to explore the possibility of appending and fine-tuning an additional ”relation
extraction” layer to the output of the a high performance BERT-Bio-NER model.

There are other research groups that are also currently exploring BERT for BioNER
and relation extraction [29]. However in terms of relation extraction, current approaches
are relatively naive and only identify binary relationships (i.e. a single cause and a single
effect). Moreover, they do not indicate relationship direction. For example, with gene-
gene relationships, the currently proposed BERT RE models are unable to differentiate
whether a specific gene entity is the cause or the effect in the gene-gene relationship.
Thus, more sophisticated relation extraction models would definitely be an interesting
research direction to pursue.

5.3 Comparing RNNs and BERT
It might initially seem quite intuitive that language data has a strong uni-directional

time dependence. We certainly speak to each other through sound waves, a time series
signal. We also read and write in a time-series fashion, one word after the next. As
such, there seems to be some built-in time-based nature to language. It is therefore, not
surprising that most NLP research has focused on time-series models such as HMMs and
RNNs.

BERT is a model that seems to accommodate beyond the uni-directional tempo-
ral dependence of RNN models. I believe that interpreting BERT’s fully feed forward
non-recurrent approach to language processing begins with viewing language (English,
French, etc.) as merely a tool for expressing our ideas. Although this tool that we use
to express our ideas, language, may seem uni-directional and time-series in nature, ideas
themselves are not time-based in the same way.

Figure 5.1 is a high-level comparison of how LSTMs and BERT’s attention layers might
be exposed to a sentence. Although in English, the sentence in Figure 5.1 translates to
”the small blue car” where both adjectives are before the noun ”car”, the French sentence
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Figure 5.1: Comparing LSTM and Attention-based Model Approaches

has adjectives ”petite” and ”bleue” on either side of the noun, ”voiture”. This example
shows that it is often necessary to read an entire sentence before understanding the com-
plete idea that is being expressed. Being a fully feed forward model that takes an entire
sentence as input at once, BERT’s attention layers probably take this sort of approach to
language. LSTM models seem to have a stronger focus on directional (either forward
or backward) dependence between entities. Thus, the LSTMs in Figure 5.1 will probably
have a harder time realizing that the adjective-noun dependence between ”petite voiture”
and ”voiture bleue” are the same relationships. Whereas BERT, which has no pre-defined
directional bias between entities probably has an easier time identifying that both ”pe-
tite” and ”bleue” are adjectives of ”voiture”. The idea that is in this French sentence is the
same as in the corresponding English sentence, but the time-series ordering of the actual
words is different in each language. This should not affect a model’s interpretation be-
cause the ordering is merely due to grammatical differences in French and English. This
would explain why BERT and its feed forward approach to language processing is much
more effective than the traditional uni-directional and time-series approaches to NLP.

BERT is an exciting new advance in NLP research. It has provided a framework for
transfer learning that was once nearly non-existent in the field of NLP. It will be exciting
to see how future research work will continue to build on BERT in the field of biomedical
information extraction.

21



CHAPTER 6
APPENDICES

6.1 Appendix A: K-Fold Cross Validation Performance

Entity Corpus Literature Best BERT-Bio-NER Percentage Difference
Chemicals BC4CHEM 89.37% 90.03% 0.73%

BC5CDR 92.82% 92.41% -0.44%
CRAFT 84.98% 83.95% -1.21%

Diseases BC5CDR 84.49% 84.54% 0.06%
NCBI-Disease 87.01% 87.05% 0.04%
Variome 86.05% 86.59% 0.62%

Species CRAFT 97.74% 95.72% -2.07%
Linnaeus 93.54% 91.32% -2.37%
S800 74.98% 79.34% 5.82%

Genes/proteins BC2GM 81.48% 85.36% 4.40%
CRAFT 84.46% 83.37% -1.29%
JNLPBA 80/92% 84.24% 4.11%

Table 6.1: State-of-the-art vs. BERT-Bio-NER F1 performance

[3]

6.2 Appendix B: Multi-Task Learning Performance

Entity Train Corpus* Test Corpus
F1 Accuracy Percentage DifferenceSingle Task Learning Multi Task Learning

In Corpus Validation Out of Corpus** In Corpus Validation Out of Corpus** In Corpus Validation Out of Corpus
Chemicals BC4CHEMD (CRAFT) BC5CDR 90.41% 89.11% 90.52% 89.17% 0.13% 0.07%

BC4CHEMD (BC5CDR) CRAFT 90.18% 44.87% 90.12% 44.52% -0.07% -0.79%
BC5CDR (CRAFT) BC4CHEMD 93.95% 69.46% 93.90% 68.81% -0.05% -0.94%
BC5CDR (BC4CHEMD) CRAFT 94.28% 27.80% 95.00% 40.52% 0.77% 45.77%
CRAFT (BC5CDR) BC4CHEMD 88.20% 36.28% 88.94% 44.58% 0.83% 22.90%
CRAFT (BC4CHEMD) BC5CDR 87.95% 40.52% 90.75% 63.59% 3.19% 56.93%

Diseases BC5CDR (Variome) NCBI 90.15% 76.78% 90.57% 73.64% 0.46% -4.09%
BC5CDR (NCBI) Variome 90.41% 68.74% 90.49% 73.97% 0.09% 7.60%
NCBI (Variome) BC5CDR 89.70% 70.61% 89.40% 68.71% -0.33% -2.70%
NCBI (BC5CDR) Variome 89.90% 73.11% 90.45% 73.45% 0.61% 0.46%
Variome (NCBI) BC5CDR 89.69% 40.70% 91.70% 62.55% 2.25% 53.68%
Variome (BC5CDR) NCBI 90.12% 46.01% 90.19% 58.46% 0.08% 27.07%

Species CRAFT (S800) Linnaeus 96.80% 53.13% 97.20% 59.25% 0.41% 11.52%
CRAFT (Linnaeus) S800 97.93% 35.53% 97.36% 48.77% -0.58% 37.24%
Linnaeus (S800) CRAFT 95.69% 80.69% 95.36% 82.74% -0.34% 2.53%
Linnaeus (CRAFT) S800 95.89% 61.21% 95.78% 63.85% -0.12% 4.31%
S800 (Linnaeus) CRAFT 75.07% 52.64% 74.11% 82.24% -1.27% 56.23%
S800 (CRAFT) Linnaeus 75.24% 59.81% 72.73% 66.12% -3.34% 10.54%

Genes/proteins BC2GM (JNLPBA) CRAFT 86.32% 53.09% 85.37% 55.45% -1.09% 4.43%
BC2GM (CRAFT) JNLPBA 86.56% 68.64% 85.38% 68.16% -1.36% -0.70%
CRAFT (JNLPBA) BC2GM 79.98% 43.93% 78.31% 46.02% -2.09% 4.76%
CRAFT (BC2GM) JNLPBA 74.31% 52.63% 75.32% 55.53% 1.36% 5.52%
JNLPBA (CRAFT) BC2GM 84.58% 56.08% 84.80% 60.67% 0.26% 8.19%
JNLPBA (BC2GM) CRAFT 84.71% 39.43% 84.62% 51.56% -0.10% 30.77%

Table 6.2: Single Tasked Learning vs Multi Tasked Learning for BERT-Bio-
NER

* For multi task learning, Corpus1(Corpus2) indicates that the model was trained on
both Corpus1 and Corpus 2, but the test corpus was evaluated on the Corpus1 model.
For single task learning, the model was only trained on Corpus1.

** The ”In Corpus Validation” reports the performance of the epoch with the best
results for the validation data across all epochs during training. The ”Out of Corpus per-
formance” is the performance of the model on the test corpus during the epoch that was
the best performing validation data epoch. It is not the best Out of Corpus performance
across all training epochs. This is to simulate true out of corpus performance, where the
model would only be tuned to the validation set performance.
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6.3 Appendix C: BERT-Bio-NER Code
The code for this project can be found via the git repository:

https://github.com/BaderLab/saber
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